La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Extremum-seeking control with adaptive excitation: application to a photovoltaic system

Kebir, Anouer et Woodward, Lyne et Akhrif, Ouassima. 2017. « Extremum-seeking control with adaptive excitation: application to a photovoltaic system ». IEEE Transactions on Industrial Electronics.
(Sous presse)

[img]
Prévisualisation
PDF
Woodward L 2017 15785 Extremum-seeking Control with.pdf - Version acceptée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (1MB) | Prévisualisation

Résumé

The objective of this study is to improve the performance of the extremum-seeking control (ESC) technique in terms of time and accuracy of convergence towards the optimum operating point of a dynamic system subject to the effect of external disturbances. More precisely, the idea is to reduce the undesirable effect of time scale separation in ESC on the performance of the closed loop system. The method consists in adaptively controlling the excitation signal amplitude using a neural network (NN) model, which gives a real-time estimate of the optimal operating point based on the measurement of the external disturbances. Stability of the proposed ESC with adaptive excitation, referred to in the following as ESCa, is demonstrated. The superiority of ESCa compared to ESC in terms of accuracy and time of convergence to the optimum is demonstrated both theoretically and experimentally, in the case of the optimization of a photovoltaic panel system (PV).

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Woodward, Lyne
Akhrif, Ouassima
Affiliation: Génie électrique, Génie électrique
Date de dépôt: 25 sept. 2017 13:54
Dernière modification: 25 sept. 2017 16:02
URI: http://espace2.etsmtl.ca/id/eprint/15785

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt

Statistiques de téléchargement

Plus de statistiques ...