Nambakhsh, M. S., Punithakumar, Kumaradevan, Ben Ayed, Ismail, Goela, Aashish, Islam, Ali, Peters, Terry and Li, Shuo.
2011.
« A neural network learned information measures for heart motion abnormality detection ».
In Progress in Biomedical Optics and Imaging (Lake Buena Vista, FL, USA, Feb. 14-16, 2011)
Coll. « Proceedings of SPIE », vol. 7962.
SPIE.
Preview |
PDF
Ben Ayed I. 2011 10518 A neural network learned information measures for heart motion abnormality detection.pdf Download (766kB) | Preview |
Abstract
In this study, we propose an information theoretic neural network for normal/abnormal left ventricular motion classification which outperforms significantly other recent methods in the literature. The proposed framework consists of a supervised 3-layer artificial neural network (ANN) which uses hyperbolic tangent sigmoid and linear transfer functions for hidden and output layers, respectively. The ANN is fed by information theoretic measures of left ventricular wall motion such as Shannon’s differential entropy (SDE), Rényi entropy and Fisher information, which measure global information of subjects distribution. Using 395×20 segmented LV cavities of short-axis magnetic resonance images (MRI) acquired from 48 subjects, the experimental results show that the proposed method outperforms Support Vector Machine (SVM) and thresholding based information theoretic classifiers. It yields a specificity equal to 90%, a sensitivity of 91%, and a remarkable Area Under Curve (AUC) for Receiver Operating Characteristic (ROC), equal to 93.2%.
Item Type: | Conference proceeding |
---|---|
ISBN: | 16057422 |
Professor: | Professor Ben Ayed, Ismail |
Affiliation: | Autres |
Date Deposited: | 11 Sep 2015 15:25 |
Last Modified: | 01 Dec 2015 14:29 |
URI: | https://espace2.etsmtl.ca/id/eprint/10518 |
Actions (login required)
View Item |