ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Area prior constrained level set evolution for medical image segmentation

Ben Ayed, Ismail, Li, Shuo, Islam, Ali, Garvin, Greg et Chhem, Rethy. 2008. « Area prior constrained level set evolution for medical image segmentation ». In Medical Imaging 2008: Image Processing (San Diego, CA, USA, Feb. 17-19, 2008) Coll. « Proceedings of SPIE », vol. 6914. pp. 691402-691401. The International Society for Optical Engineering.
Compte des citations dans Scopus : 7.

[thumbnail of Ben Ayed I. 2008 10555 Area prior constrained level set evolution for medical image segmentation.pdf]
Prévisualisation
PDF
Ben Ayed I. 2008 10555 Area prior constrained level set evolution for medical image segmentation.pdf

Télécharger (303kB) | Prévisualisation

Résumé

The level set framework has proven well suited to medical image segmentation1–6 thanks to its ability of balancing the contribution of image data and prior knowledge in a principled, flexible and transparent way. It consists of evolving a curve toward the target object boundaries. The curve evolution equation is sought following the optimization of a cost functional containing two types of terms: data terms, which measure the fidelity of segmentation to image intensities, and prior terms, which traduce learned prior knowledge. Without priors many algorithms are likely to fail due to high noise, low contrast and data incompleteness. Different priors have been investigated such as shape1 and appearance priors.7 In this study, we propose a simple type of priors: the area prior. This prior embeds knowledge of an approximate object area and has two positive effects. First, It speeds up significantly the evolution when the curve is far from the target object boundaries. Second, it slows down the evolution when the curve is close to the target. Consequently, it reinforces curve stability at the desired boundaries when dealing with low contrast intensity edges. The algorithm is validated with several experiments using Magnetic Resonance (MR) images and Computed Tomography (CT) images. A comparison with another level set method illustrates the positive effects of the area prior.

Type de document: Compte rendu de conférence
ISBN: 0277-786X
Éditeurs:
Éditeurs
ORCID
Reinhardt, Joseph M.
NON SPÉCIFIÉ
Pluim, Josien P. W.
NON SPÉCIFIÉ
Informations complémentaires: Progress in Biomedical Optics and Imaging: Medical Imaging 2008: Image Processing, 17-19 Feb. 2008
Professeur:
Professeur
Ben Ayed, Ismail
Affiliation: Autres
Date de dépôt: 11 sept. 2015 15:38
Dernière modification: 07 sept. 2023 17:42
URI: https://espace2.etsmtl.ca/id/eprint/10555

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt