Khoshrou, Samaneh, Cardoso, Jaime S., Granger, Eric et Teixeira, Luis F..
2015.
« Spatio-temporal fusion for learning of regions of interests over multiple video streams ».
In Advances in Visual Computing : 11th International Symposium, ISVC 2015, Las Vegas, NV, USA, December 14-16, 2015, Proceedings, Part II (Las Vegas, NV, USA, Dec. 14-16, 2015)
Coll. « Lecture Notes in Computer Science », vol. 9475.
pp. 509-520.
Springer Verlag.
Prévisualisation |
PDF
Spatio-temporal-fusion-for-learning-of-regions-of-interests-over-multiple-video-streams.pdf Télécharger (921kB) | Prévisualisation |
Résumé
Video surveillance systems must process and manage a growing amount of data captured over a network of cameras for various recognition tasks. In order to limit human labour and error, this paper presents a spatial-temporal fusion approach to accurately combine information from Region of Interest (RoI) batches captured in a multi-camera surveillance scenario. In this paper, feature-level and score-level approaches are proposed for spatial-temporal fusion of information to combine information over frames, in a framework based on ensembles of GMMUBM (Universal Background Models). At the feature-level, features in a batch of multiple frames are combined and fed to the ensemble, whereas at the score-level the outcome of ensemble for individual frames are combined. Results indicate that feature-level fusion provides higher level of accuracy in a very efficient way.
Type de document: | Compte rendu de conférence |
---|---|
ISBN: | 03029743 |
Professeur: | Professeur Granger, Éric |
Affiliation: | Génie de la production automatisée |
Date de dépôt: | 28 janv. 2016 19:43 |
Dernière modification: | 17 août 2016 19:21 |
URI: | https://espace2.etsmtl.ca/id/eprint/12175 |
Actions (Authentification requise)
Dernière vérification avant le dépôt |