ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Laser powder bed fusion of water-atomized iron-based powders: process optimization

Téléchargements

Téléchargements par mois depuis la dernière année

Plus de statistiques...

Letenneur, Morgan, Brailovski, Vladimir, Kreitcberg, Alena, Paserin, Vladimir et Bailon-Poujol, Ian. 2017. « Laser powder bed fusion of water-atomized iron-based powders: process optimization ». Journal of Manufacturing and Materials Processing, vol. 1, nº 2.
Compte des citations dans Scopus : 43.

[thumbnail of Brailovski V 2017 16031 Laser Powder Bed Fusion of.pdf]
Prévisualisation
PDF
Brailovski V 2017 16031 Laser Powder Bed Fusion of.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (7MB) | Prévisualisation

Résumé

The laser powder bed fusion (L-PBF) technology was adapted for use with non-spherical low-cost water-atomized iron powders. A simplified numerical and experimental modeling approach was applied to determine—in a first approximation—the operation window for the selected powder in terms of laser power, scanning speed, hatching space, and layer thickness. The operation window, delimited by a build rate ranging from 4 to 25 cm3/h, and a volumetric energy density ranging from 50 to 190 J/mm3, was subsequently optimized to improve the density, the mechanical properties, and the surface roughness of the manufactured specimens. Standard L-PBF-built specimens were subjected to microstructural (porosity, grain size) and metrological (accuracy, shrinkage, minimum wall thickness, surface roughness) analyses and mechanical testing (three-point bending and tensile tests). The results of the microstructural, metrological and mechanical characterizations of the L-PBF-built specimens subjected to stress relieve annealing and hot isostatic pressing were then compared with those obtained with conventional pressing-sintering technology. Finally, by using an energy density of 70 J/mm3 and a build rate of 9 cm3/h, it was possible to manufacture 99.8%-dense specimens with an ultimate strength of 330 MPa and an elongation to failure of 30%, despite the relatively poor circularity of the powder used.

Type de document: Article publié dans une revue, révisé par les pairs
Informations complémentaires: Identifiant de l'article: 23
Professeur:
Professeur
Brailovski, Vladimir
Kreitcberg, Alena
Affiliation: Génie mécanique, Autres
Date de dépôt: 18 déc. 2017 17:24
Dernière modification: 08 juill. 2023 23:28
URI: https://espace2.etsmtl.ca/id/eprint/16031

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt