Kumar, Kuldeep, Desrosiers, Christian, Siddiqi, Kaleem, Colliot, Olivier et Toews, Matthew.
14 novembre 2017.
« Fiberprint: Human Brain Wiring Shows Unique Fingerprint ».
[Article de recherche]. Substance ÉTS.
Prévisualisation |
PDF
Substance 2017 17169 Fiberprint Human Brain Wiring Shows Unique Fingerprint.pdf - Version publiée Licence d'utilisation : Creative Commons CC BY-NC. Télécharger (1MB) | Prévisualisation |
Résumé
White matter characterization studies use the information provided by diffusion magnetic resonance imaging (dMRI) to draw cross-population inferences. However, the structure, function, and white matter geometry vary across individuals. Here, we propose a subject fingerprint, called Fiberprint, to quantify the individual uniqueness in white matter geometry using fiber trajectories. We learn a sparse coding representation for fiber trajectories by mapping them to a common space defined by a dictionary. A subject fingerprint is then generated by applying a pooling function for each bundle, thus providing a vector of bundle-wise features describing a particular subject’s white matter geometry. These features encode unique properties of fiber trajectories, such as their density along prominent bundles. An analysis of data from 861 Human Connectome Project subjects reveals that a fingerprint based on approximately 3,000 fiber trajectories can uniquely identify exemplars from the same individual. We also use fingerprints for twin/sibling identification, our observations consistent with the twin data studies of white matter integrity. Our results demonstrate that the proposed Fiberprint can effectively capture the variability in white matter fiber geometry across individuals, using a compact feature vector (dimension of 50), making this framework particularly attractive for handling large datasets.
Type de document: | Article de revue ou de magazine, non révisé par les pairs |
---|---|
Validation par les pairs: | Non |
Professeur: | Professeur Desrosiers, Christian Toews, Matthew |
Affiliation: | Génie logiciel et des technologies de l'information, Génie de la production automatisée |
Date de dépôt: | 07 août 2018 14:53 |
Dernière modification: | 28 janv. 2020 16:31 |
URI: | https://espace2.etsmtl.ca/id/eprint/17169 |
Actions (Authentification requise)
Dernière vérification avant le dépôt |