Afshin, Mariam, Ben Ayed, Ismail, Punithakumar, Kumaradevan, Law, Max, Islam, Ali, Goela, Aashish, Peters, Terry et Li, Shuo.
29 août 2017.
« Automating Cardiac Disease Detection ».
[Article de recherche]. Substance ÉTS.
Prévisualisation |
PDF
Substance 2017 17182 Automating Cardiac Disease Detection.pdf - Version publiée Licence d'utilisation : Creative Commons CC BY-NC. Télécharger (809kB) | Prévisualisation |
Résumé
Automating the detection and localization of segmental (regional) left ventricle (LV) abnormalities in magnetic resonance imaging (MRI) is challenging, with much room for improvements in regard to accuracy. The purpose of the study is to investigate a real-time machine-learning approach which uses some image features that can be easily computed, but that correlate well with the segmental cardiac function. Starting from a minimum user input in only one frame in a subject dataset, we build for all the regional segments and all subsequent frames a set of statistical MRI features based on a measure of similarity between distributions. We demonstrate that, over a cardiac cycle, the statistical features are related to the proportion of blood within each segment. Therefore, they can characterize segmental contraction without the need for delineating the LV boundaries in all the frames. Compared against ground-truth evaluations by experienced radiologists, the proposed algorithm performed competitively, with an overall classification accuracy of 86.09% and a kappa measure of 0.73. Key words: image statistics, linear support vector machine, LSVM, magnetic resonance imaging, MRI
Type de document: | Article de revue ou de magazine, non révisé par les pairs |
---|---|
Validation par les pairs: | Non |
Professeur: | Professeur Ben Ayed, Ismail |
Affiliation: | Génie de la production automatisée |
Date de dépôt: | 07 août 2018 14:52 |
Dernière modification: | 28 janv. 2020 16:12 |
URI: | https://espace2.etsmtl.ca/id/eprint/17182 |
Actions (Authentification requise)
Dernière vérification avant le dépôt |