ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Automating Cardiac Disease Detection

Afshin, Mariam, Ben Ayed, Ismail, Punithakumar, Kumaradevan, Law, Max, Islam, Ali, Goela, Aashish, Peters, Terry et Li, Shuo. 29 août 2017. « Automating Cardiac Disease Detection ». [Article de recherche]. Substance ÉTS.

[thumbnail of Substance 2017 17182 Automating Cardiac Disease Detection.pdf]
Prévisualisation
PDF
Substance 2017 17182 Automating Cardiac Disease Detection.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY-NC.

Télécharger (809kB) | Prévisualisation

Résumé

Automating the detection and localization of segmental (regional) left ventricle (LV) abnormalities in magnetic resonance imaging (MRI) is challenging, with much room for improvements in regard to accuracy. The purpose of the study is to investigate a real-time machine-learning approach which uses some image features that can be easily computed, but that correlate well with the segmental cardiac function. Starting from a minimum user input in only one frame in a subject dataset, we build for all the regional segments and all subsequent frames a set of statistical MRI features based on a measure of similarity between distributions. We demonstrate that, over a cardiac cycle, the statistical features are related to the proportion of blood within each segment. Therefore, they can characterize segmental contraction without the need for delineating the LV boundaries in all the frames. Compared against ground-truth evaluations by experienced radiologists, the proposed algorithm performed competitively, with an overall classification accuracy of 86.09% and a kappa measure of 0.73. Key words: image statistics, linear support vector machine, LSVM, magnetic resonance imaging, MRI

Type de document: Article de revue ou de magazine, non révisé par les pairs
Validation par les pairs: Non
Professeur:
Professeur
Ben Ayed, Ismail
Affiliation: Génie de la production automatisée
Date de dépôt: 07 août 2018 14:52
Dernière modification: 28 janv. 2020 16:12
URI: https://espace2.etsmtl.ca/id/eprint/17182

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt