Saberi, Leila, McLaughlin, Rachel T., Crystal Ng, G. H., La Frenierre, Jeff, Wickert, Andrew D., Baraer, Michel, Zhi, Wei, Li, Li et Mark, Bryan G..
2019.
« Multi-scale temporal variability in meltwater contributions in a tropical glacierized watershed ».
Hydrology and Earth System Sciences, vol. 23, nº 1.
pp. 405-425.
Compte des citations dans Scopus : 31.
Prévisualisation |
PDF
Baraer M 2019 18191.pdf - Version publiée Licence d'utilisation : Creative Commons CC BY. Télécharger (4MB) | Prévisualisation |
Prévisualisation |
PDF
Baraer M 2019 18191-corrigendum.pdf - Matériel supplémentaire Licence d'utilisation : Creative Commons CC BY. Télécharger (402kB) | Prévisualisation |
Résumé
Climate models predict amplified warming at high elevations in low latitudes, making tropical glacierized regions some of the most vulnerable hydrological systems in the world. Observations reveal decreasing streamflow due to retreating glaciers in the Andes, which hold 99 % of all tropical glaciers. However, the timescales over which meltwater contributes to streamflow and the pathways it takes – surface and subsurface – remain uncertain, hindering our ability to predict how shrinking glaciers will impact water resources. Two major contributors to this uncertainty are the sparsity of hydrologic measurements in tropical glacierized watersheds and the complication of hydrograph separation where there is year-round glacier melt. We address these challenges using a multi-method approach that employs repeat hydrochemical mixing model analysis, hydroclimatic time series analysis, and integrated watershed modeling. Each of these approaches interrogates distinct timescale relationships among meltwater, groundwater, and stream discharge. Our results challenge the commonly held conceptual model that glaciers buffer discharge variability. Instead, in a subhumid watershed on Volcán Chimborazo, Ecuador, glacier melt drives nearly all the variability in discharge (Pearson correlation coefficient of 0.89 in simulations), with glaciers contributing a broad range of 20 %–60 % or wider of discharge, mostly (86 %) through surface runoff on hourly timescales, but also through infiltration that increases annual groundwater contributions by nearly 20 %. We further found that rainfall may enhance glacier melt contributions to discharge at timescales that complement glacier melt production, possibly explaining why minimum discharge occurred at the study site during warm but dry El Niño conditions, which typically heighten melt in the Andes. Our findings caution against extrapolations from isolated measurements: stream discharge and glacier melt contributions in tropical glacierized systems can change substantially at hourly to interannual timescales, due to climatic variability and surface to subsurface flow processes.
Type de document: | Article publié dans une revue, révisé par les pairs |
---|---|
Professeur: | Professeur Baraër, Michel |
Affiliation: | Génie de la construction |
Date de dépôt: | 20 févr. 2019 19:58 |
Dernière modification: | 12 juill. 2019 20:09 |
URI: | https://espace2.etsmtl.ca/id/eprint/18191 |
Actions (Authentification requise)
Dernière vérification avant le dépôt |