ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Using Artificial Intelligence in Optical Networking

Aladin, Sandra et Tremblay, Christine. 20 février 2019. « Using Artificial Intelligence in Optical Networking ». [Article de recherche]. Substance ÉTS.

[thumbnail of Substance 2019 18308 Using Artificial Intelligence in Optical Networking - Substance.pdf]
Prévisualisation
PDF
Substance 2019 18308 Using Artificial Intelligence in Optical Networking - Substance.pdf

Télécharger (770kB) | Prévisualisation

Résumé

The increasing complexity of optical networks designed to meet a multitude of services generates massive amounts of data. In addition, any service interruption, even momentary, can cause huge data losses, leading to bad customer experience. Machine learning has been proposed and applied in several fields in the last decades. In this study, the Network Technology Laboratory is introducing a tool that estimates the quality of transmission (QoT) of lightpaths before their implementation in the network, based on machine learning algorithms. This tool could help in routing and wavelength assignment by first discarding bad QoT connections. An evaluation of three machine learning techniques for optical networks was performed: the support vector machine (SVM), the K nearest neighbours (K-NN) and the random forest (RF).

Type de document: Article de revue ou de magazine, non révisé par les pairs
Validation par les pairs: Non
Mots-clés libres: Machine Learning, Quality of Transmission (QoT), lightpaths, K nearest neighbors (K-NN), Random Forest (RF), Support Vector Machine (SVM)
Professeur:
Professeur
Tremblay, Christine
Affiliation: Génie électrique
Date de dépôt: 26 mars 2019 16:06
Dernière modification: 19 sept. 2019 20:14
URI: https://espace2.etsmtl.ca/id/eprint/18308

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt