ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Dynamic Classification of Abnormal Spinal Curves

Garcia Cano, Edgar, Arambula, Fernando, Duong, Luc, Bellefleur, Christian, Roy Beaudry, Marjolaine, Joncas, Julien et Parent, Stephan. 19 novembre 2018. « Dynamic Classification of Abnormal Spinal Curves ». [Article de recherche]. Substance ÉTS.

[thumbnail of Substance 2018 18316 Dynamic Classification of Abnormal.pdf]
Prévisualisation
PDF
Substance 2018 18316 Dynamic Classification of Abnormal.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY-NC.

Télécharger (2MB) | Prévisualisation

Résumé

Adolescent Idiopathic Scoliosis (AIS) is a 3D deformation of the spine. AIS usually affects the younger population in the early stages of puberty and is more frequent in females than in males. As in any other medical condition, assessment is an important step to provide adequate treatment and follow-up for each patient. The Lenke classification is the common criterion used by clinicians to categorize spinal curvatures based on 2D measurements. These are obtained from radiographs of the spine in a standing position. The goal of this study is to classify scoliotic curves. We propose a technique called leave-n-out angle to describe spines from 3D reconstructions, and a Dynamic Ensemble Selection (DES), a Machine Learning method to automatically assess curvature types. Keywords: spine classification, descriptors of the spine, Adolescent Idiopathic Scoliosis, Dynamic Ensemble Selection, machine learning

Type de document: Article de revue ou de magazine, non révisé par les pairs
Validation par les pairs: Non
Professeur:
Professeur
Duong, Luc
Affiliation: Génie logiciel et des technologies de l'information
Date de dépôt: 26 mars 2019 16:09
Dernière modification: 02 avr. 2019 14:52
URI: https://espace2.etsmtl.ca/id/eprint/18316

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt