ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

A multivariate relationship between the kinematic and clinical parameters of knee osteoarthritis population

Bensalma, Fatima, Mezghani, Neila, Ouakrim, Youssef, Fuentes, Alexandre, Choiniere, Manon, Bureau, Nathalie J., Durand, Madelaine et Hagemeister, Nicola. 2019. « A multivariate relationship between the kinematic and clinical parameters of knee osteoarthritis population ». Biomedical Engineering Online, vol. 18.
Compte des citations dans Scopus : 12.

[thumbnail of Hagemeister N 2019 18863.pdf]
Prévisualisation
PDF
Hagemeister N 2019 18863.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (1MB) | Prévisualisation

Résumé

Background Biomechanical and clinical parameters contribute very closely to functional evaluations of the knee joint. To better understand knee osteoarthritis joint function, the association between a set of knee biomechanical data and a set of clinical parameters of an osteoarthritis population (OA) is investigated in this study. Methods The biomechanical data used here are a set of characteristics derived from 3D knee kinematic patterns: flexion/extension, abduction/adduction, and tibial internal/external rotation measurements, all determined during gait recording. The clinical parameters include a KOOS questionnaire and the patient’s demographic characteristics. Canonical correlation analysis (CCA) is used (1) to evaluate the multivariate relationship between biomechanical data and clinical parameter sets, and (2) to cluster the most correlated parameters. Multivariate models were created within the identified clusters to determine the effect of each parameter’s subset on the other. The analyses were performed on a large database containing 166 OA patients. Results The CCA results showed meaningful correlations that gave rise to three different clusters. Multivariate linear models were found explaining the subjective clinical parameters by evaluating the biomechanical data contained within each cluster. Conclusion The results showed that a multivariate analysis of the clinical symptoms and the biomechanical characteristics of knee joint function allowed a better understanding of their relationships.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Hagemeister, Nicola
Affiliation: Génie des systèmes
Date de dépôt: 03 juin 2019 20:58
Dernière modification: 17 janv. 2020 20:43
URI: https://espace2.etsmtl.ca/id/eprint/18863

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt