ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

CycleGAN for style transfer in X-ray angiography

Tmenova, Oleksandra, Martin, Rémi et Duong, Luc. 2019. « CycleGAN for style transfer in X-ray angiography ». International Journal of Computer Assisted Radiology and Surgery, vol. 14, nº 10. pp. 1785-1794.
Compte des citations dans Scopus : 24.

[thumbnail of Duong-L-2019-19292.pdf]
Prévisualisation
PDF
Duong-L-2019-19292.pdf - Version acceptée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (9MB) | Prévisualisation

Résumé

Purpose -- We aim to perform generation of angiograms for various vascular structures as a mean of data augmentation in learning tasks. The task is to enhance the realism of vessels images generated from an anatomically realistic cardiorespiratory simulator to make them look like real angiographies. Methods -- The enhancement is performed by applying the CycleGAN deep network for transferring the style of real angiograms acquired during percutaneous interventions into a data set composed of realistically simulated arteries. Results -- The cycle consistency was evaluated by comparing an input simulated image with the one obtained after two cycles of image translation. An average structural similarity (SSIM) of 0.948 on our data sets has been obtained. The vessel preservation was measured by comparing segmentations of an input image and its corresponding enhanced image using Dice coefficient. Conclusions -- We proposed an application of the CycleGAN deep network for enhancing the artificial data as an alternative to classical data augmentation techniques for medical applications, particularly focused on angiogram generation. We discussed success and failure cases, explaining conditions for the realistic data augmentation which respects both the complex physiology of arteries and the various patterns and textures generated by X-ray angiography.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Duong, Luc
Affiliation: Génie logiciel et des technologies de l'information
Date de dépôt: 26 août 2019 20:03
Dernière modification: 19 mai 2022 19:30
URI: https://espace2.etsmtl.ca/id/eprint/19292

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt