ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

IBIS: an OR ready open-source platform for image-guided neurosurgery

Drouin, Simon, Kochanowska, Anna, Kersten-Oertel, Marta, Gerard, Ian J., Zelmann, Rina, De Nigris, Dante, Bériault, Silvain, Arbel, Tal, Sirhan, Denis, Sadikot, Abbas F., Hall, Jeffery A., Sinclair, David S., Petrecca, Kevin, DelMaestro, Rolando F. et Collins, D. Louis. 2017. « IBIS: an OR ready open-source platform for image-guided neurosurgery ». International Journal of Computer Assisted Radiology and Surgery, vol. 12, nº 3. pp. 363-378.
Compte des citations dans Scopus : 82.

[thumbnail of Drouin-S-2017-19457.pdf]
Prévisualisation
PDF
Drouin-S-2017-19457.pdf - Version acceptée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (14MB) | Prévisualisation

Résumé

Purpose: Navigation systems commonly used in neurosurgery suffer from two main drawbacks: 1) their accuracy degrades over the course of the operation and 2) they require the surgeon to mentally map images from the monitor to the patient. In this paper, we introduce the Intraoperative Brain Imaging System (IBIS), an open source image-guided neurosurgery (IGNS) research platform that implements a novel workflow where navigation accuracy is improved using tracked intraoperative ultrasound (iUS) and the visualization of navigation information is facilitated through the use of augmented reality (AR). Methods: The IBIS platform allows a surgeon to capture tracked iUS images and use them to automatically update preoperative patient models and plans through fast GPU-based reconstruction and registration methods. Navigation, resection and iUSbased brain shift correction can all be performed using an AR view. IBIS has an intuitive graphical user interface (GUI) for the calibration of a US probe, a surgical pointer as well as video devices used for AR (e.g.: a surgical microscope). Results: The components of IBIS have been validated in the lab and evaluated in the operating room. Image-to-patient registration accuracy is on the order of 3.72 ± 1.27mm and can be improved with iUS to a median target registration error of 2.54mm. The accuracy of the US probe calibration is between 0.49mm to 0.82mm. The average reprojection error of the AR system is 0.37 ± 0.19mm. The system has been used in the operating room for various types of surgery, including brain tumor resection, vascular neurosurgery, spine surgery and DBS electrode implantation. Conclusions: The IBIS platform is a validated system that allows researchers to quickly bring the results of their work into the operating room for evaluation. It is the first open source navigation system to provides a complete solution for AR visualization.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Drouin, Simon
Affiliation: Autres
Date de dépôt: 04 oct. 2019 14:53
Dernière modification: 10 mars 2025 14:53
URI: https://espace2.etsmtl.ca/id/eprint/19457

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt