ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Deep convolutional variational autoencoder as a 2D-visualization tool for partial discharge source classification in hydrogenerators

Zemouri, Ryad, Levesque, Melanie, Amyot, Normand, Hudon, Claude, Kokoko, Olivier et Tahan, Souheil Antoine. 2020. « Deep convolutional variational autoencoder as a 2D-visualization tool for partial discharge source classification in hydrogenerators ». IEEE Access, vol. 8. pp. 5438-5454.
Compte des citations dans Scopus : 44.

[thumbnail of Tahan A 2019 20147.pdf]
Prévisualisation
PDF
Tahan A 2019 20147.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (3MB) | Prévisualisation

Résumé

Hydrogenerators are strategic assets for power utilities. Their reliability and availability can lead to significant benefits. For decades, monitoring and diagnosis of hydrogenerators have been at the core of maintenance strategies. A significant part of generator diagnosis relies on Partial Discharge (PD) measurements, because the main cause of hydrogenerator breakdown comes from failure of its high voltage stator, which is a major component of hydrogenerators. A study of all stator failure mechanisms reveals that more than 85% of them involve the presence of PD activity. PD signal can be detected from the lead of the hydrogenerator while it is running, thus allowing for on-line diagnosis. Hydro-Québec has been collecting more than 33 000 unlabeled PD measurement files over the last decades. Up to now, this diagnostic technique has been quantified based on global PD amplitudes and integrated PD energy irrespective of the source of the PD signal. Several PD sources exist and they all have different relative risk, but in order to recognize the nature of the PD, or its source, the judgement of experts is required. In this paper, we propose a new method based on visual data analysis to build a PD source classifier with a minimum of labeled data. A convolutional variational autoencoder has been used to help experts to visually select the best training data set in order to improve the performances of the PD source classifier.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Tahan, Antoine
Affiliation: Génie mécanique
Date de dépôt: 07 févr. 2020 15:33
Dernière modification: 19 oct. 2020 14:41
URI: https://espace2.etsmtl.ca/id/eprint/20147

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt