Cantin, Sébastien, Chouak, Mohamed, Morency, François et Garnier, François.
2022.
« Eulerian–Lagrangian CFD-microphysics modeling of a near-field contrail from a realistic turbofan ».
International Journal of Engine Research, vol. 23, nº 4.
Compte des citations dans Scopus : 2.
Prévisualisation |
PDF
Morency-F-2021-22282.pdf - Version acceptée Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur. Télécharger (2MB) | Prévisualisation |
Résumé
Aircraft contrails contribute to climate change through global radiative forcing. As part of the general effort aimed at developing reliable decision-making tools, this paper demonstrates the feasibility of implementing a Lagrangian ice microphysical module in a commercial CFD code to characterize the early development of near-field contrails. While engine jets are highly parameterized in most existing models in a way that neglects the nozzle exit-related aspects, our model accounts for the geometric complexity of modern turbofan exhausts. The modeling strategy is based on three-dimensional URANS simulations of an aircraft nozzle exit involving a bypass and a core jet (Eulerian gas phase). Solid soot and ice particles (dispersed phase) are individually tracked using a Lagrangian approach. The implemented microphysical module accounts for the main process of water-vapor condensation on pre-activated soot particles known as heterogeneous condensation. The predictive capabilities of the proposed model are demonstrated through a comprehensive validation set based on the jet-flow dynamics and turbulence statistics in the case of compressible, turbulent coaxial jets. Simulations of contrail formation from a realistic nozzle-exit geometry of the CFM56-3 engine (short-cowl nozzle delivering a dual stream jet with a bypass rate of 5.3) were also carried out in typical cruise flight conditions ensuring contrail formation. The model provides reliable predictions in terms of the plume dilution and ice-particle properties as compared to available in-flight and numerical data. Such a model can then be used to characterize the impact of nozzle-exit parameters on the optical and microphysical properties of near-field contrails.
Type de document: | Article publié dans une revue, révisé par les pairs |
---|---|
Professeur: | Professeur Morency, François Garnier, François |
Affiliation: | Génie mécanique, Génie mécanique |
Date de dépôt: | 25 févr. 2021 17:11 |
Dernière modification: | 24 août 2022 18:41 |
URI: | https://espace2.etsmtl.ca/id/eprint/22282 |
Actions (Authentification requise)
Dernière vérification avant le dépôt |