ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Multi-tonal low frequency noise control for aircraft cabin using Helmholtz resonator with complex cavity

Kone, Tenon Charly, Ghinet, Sebastian, Panneton, Raymond, Dupont, Thomas et Grewal, Anant. 2021. « Multi-tonal low frequency noise control for aircraft cabin using Helmholtz resonator with complex cavity ». In Proceedings of INTER-NOISE 2021 - 2021 International Congress and Exposition of Noise Control Engineering (Washington, DC, USA, Aug. 01-05, 2021) pp. 3944-4918. The Institute of Noise Control Engineering.

[thumbnail of Dupont-T-2021-23537.pdf]
Prévisualisation
PDF
Dupont-T-2021-23537.pdf - Version acceptée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (1MB) | Prévisualisation

Résumé

The noise control at multiple tonal frequencies simultaneously, in the low frequency range, is a challenge for aerospace, ground transportation and building industries. In the past few decades, various low frequency noise control solutions based on acoustic metamaterial designs have been presented in the literature. These solutions showed promising performance and are considered a better alternative to conventional sound insulation materials. In the present investigation, it was noticed that subdividing the cavity of a Helmholtz resonator allowed the control of multi-tonal noise at several resonance frequencies simultaneously and a shift of the resonance peaks towards the low frequencies. This paper proposes concepts of Helmholtz resonators with subdivided cavities to improve the sound transmission loss (STL) performance and simultaneously control the noise at several tonal frequencies. HRs with cylindrical shaped cavities were embedded in a layer of porous material. The STL of the metamaterial noise insulation configuration was predicted using serial and parallel assemblies of transfer matrices (TMM) incorporating a thermo-viscous-acoustic approach to accurately account for the viscous and thermal losses of acoustic wave propagation within the metamaterial. The STL calculated using the proposed TMM approach were observed to be in excellent agreement with the finite element method (FEM) numerical results.

Type de document: Compte rendu de conférence
ISBN: 9781732598652 (ISBN)
Éditeurs:
Éditeurs
ORCID
Dare, T.
NON SPÉCIFIÉ
Bolton, S.
NON SPÉCIFIÉ
Davies, P.
NON SPÉCIFIÉ
Xue, Y.
NON SPÉCIFIÉ
Ebbitt, G.
NON SPÉCIFIÉ
Professeur:
Professeur
Dupont, Thomas
Affiliation: Génie mécanique
Date de dépôt: 16 nov. 2021 14:44
Dernière modification: 10 déc. 2021 17:42
URI: https://espace2.etsmtl.ca/id/eprint/23537

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt