ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Design of a SIMO deep learning-based chaos shift keying (DLCSK) communication system

Mobini, Majid, Kaddoum, Georges et Herceg, Marijan. 2022. « Design of a SIMO deep learning-based chaos shift keying (DLCSK) communication system ». Sensors, vol. 22, nº 1.
Compte des citations dans Scopus : 8.

[thumbnail of Kaddoum-G-2022-23842.pdf]
Prévisualisation
PDF
Kaddoum-G-2022-23842.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (1MB) | Prévisualisation

Résumé

This paper brings forward a Deep Learning (DL)-based Chaos Shift Keying (DLCSK) demodulation scheme to promote the capabilities of existing chaos-based wireless communication systems. In coherent Chaos Shift Keying (CSK) schemes, we need synchronization of chaotic sequences, which is still practically impossible in a disturbing environment. Moreover, the conventional Differential Chaos Shift Keying (DCSK) scheme has a drawback, that for each bit, half of the bit duration is spent sending non-information bearing reference samples. To deal with this drawback, a Long Short-Term Memory (LSTM)-based receiver is trained offline, using chaotic maps through a finite number of channel realizations, and then used for classifying online modulated signals. We presented that the proposed receiver can learn different chaotic maps and estimate channels implicitly, and then retrieves the transmitted messages without any need for chaos synchronization or reference signal transmissions. Simulation results for both the AWGN and Rayleigh fading channels show a remarkable BER performance improvement compared to the conventional DCSK scheme. The proposed DLCSK system will provide opportunities for a new class of receivers by leveraging the advantages of DL, such as effective serial and parallel connectivity. A Single Input Multiple Output (SIMO) architecture of the DLCSK receiver with excellent reliability is introduced to show its capabilities. The SIMO DLCSK benefits from a DL-based channel estimation approach, which makes this architecture simpler and more efficient for applications where channel estimation is problematic, such as massive MIMO, mmWave, and cloud-based communication systems.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Kaddoum, Georges
Affiliation: Génie électrique
Date de dépôt: 24 janv. 2022 17:19
Dernière modification: 03 mars 2022 16:04
URI: https://espace2.etsmtl.ca/id/eprint/23842

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt