Azizmohammadi, Fariba, Navarro Castellanos, Iñaki, Miró, Joaquim, Segars, Paul, Samei, Ehsan et Duong, Luc.
2022.
« Generative learning approach for radiation dose reduction in X-ray guided cardiac interventions ».
Medical Physics, vol. 49, nº 6.
pp. 4071-4081.
Compte des citations dans Scopus : 4.
Prévisualisation |
PDF
Duong-L-2022-24337.pdf - Version acceptée Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur. Télécharger (2MB) | Prévisualisation |
Résumé
Background -- Navigation guidance in cardiac interventions is provided by X-ray angiography. Cumulative radiation exposure is a serious concern for pediatric cardiac interventions. Purpose -- A generative learning-based approach is proposed to predict X-ray angiography frames to reduce the radiation exposure for pediatric cardiac interventions while preserving the image quality. Methods -- Frame predictions are based on a model-free motion estimation approach using a long short-term memory architecture and a content predictor using a convolutional neural network structure. The presented model thus estimates contrast-enhanced vascular structures such as the coronary arteries and their motion in X-ray sequences in an end-to-end system. This work was validated with 56 simulated and 52 patients' X-ray angiography sequences. Results -- Using the predicted images can reduce the number of pulses by up to three new frames without affecting the image quality. The average required acquisition can drop by 30% per second for a 15 fps acquisition. The average structural similarity index measurement was 97% for the simulated dataset and 82% for the patients' dataset. Conclusions -- Frame prediction using a learning-based method is promising for minimizing radiation dose exposure. The required pulse rate is reduced while preserving the frame rate and the image quality. With proper integration in X-ray angiography systems, this method can pave the way for improved dose management.
Type de document: | Article publié dans une revue, révisé par les pairs |
---|---|
Professeur: | Professeur Duong, Luc |
Affiliation: | Génie logiciel et des technologies de l'information |
Date de dépôt: | 09 mai 2022 15:46 |
Dernière modification: | 06 avr. 2023 04:00 |
URI: | https://espace2.etsmtl.ca/id/eprint/24337 |
Actions (Authentification requise)
Dernière vérification avant le dépôt |