ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

High-temperature electrical conductivity in piezoelectric lithium niobate

Téléchargements

Téléchargements par mois depuis la dernière année

Plus de statistiques...

Lucas, Killian, Bouchy, Sévan, Bélanger, Pierre et Zednik, Ricardo J.. 2022. « High-temperature electrical conductivity in piezoelectric lithium niobate ». Journal of Applied Physics, vol. 131, nº 19. p. 194102.
Compte des citations dans Scopus : 8.

[thumbnail of Zednik-R-2022-24358.pdf]
Prévisualisation
PDF
Zednik-R-2022-24358.pdf - Version acceptée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (1MB) | Prévisualisation

Résumé

Lithium niobate is a promising candidate for use in high-temperature piezoelectric devices due to its high Curie temperature (≈1483 K) and strong piezoelectric properties. However, the piezoelectric behavior has, in practice, been found to degrade at various temperatures as low as 573 K, with no satisfactory explanation available in the literature. We, therefore, studied the electrical conductivity of congruent lithium niobate single crystals in the temperature range of 293–1273 K with an 500 mV excitation at frequencies between 20 Hz and 20 MHz. An analytical model that generalizes the universal dielectric relaxation law with the Arrhenius equation was found to describe the experimental temperature and frequency dependence and helped discriminate between conduction mechanisms. Electronic conduction was found to dominate at low temperatures, leading to low overall electrical conductivity. However, at high temperatures, the overall electrical conductivity increases significantly due to ionic conduction, primarily with lithium ions (Li+) as charge carriers. This increase in electrical conductivity can, therefore, cause an internal short in the lithium niobate crystal, thereby reducing observable piezoelectricity. Interestingly, the temperature above which ionic conductivity dominates depends greatly on the excitation frequency: at a sufficiently high frequency, lithium niobate does not exhibit appreciable ionic conductivity at high temperature, helping explain the conflicting observations reported in the literature. These findings enable an appropriate implementation of lithium niobate to realize previously elusive high-temperature piezoelectric applications.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Zednik, Ricardo
Affiliation: Génie mécanique
Date de dépôt: 01 juin 2022 17:56
Dernière modification: 01 juin 2022 18:51
URI: https://espace2.etsmtl.ca/id/eprint/24358

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt