ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Data-driven calibration of rough heat transfer prediction using bayesian inversion and genetic algorithm

Téléchargements

Téléchargements par mois depuis la dernière année

Plus de statistiques...

Ignatowicz, Kevin, Solai, Elie, Morency, Francois et Beaugendre, Heloise. 2022. « Data-driven calibration of rough heat transfer prediction using bayesian inversion and genetic algorithm ». Energies, vol. 15, nº 10.
Compte des citations dans Scopus : 7.

[thumbnail of Morency-F-2022-24519.pdf]
Prévisualisation
PDF
Morency-F-2022-24519.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (4MB) | Prévisualisation

Résumé

The prediction of heat transfers in Reynolds-Averaged Navier–Stokes (RANS) simulations requires corrections for rough surfaces. The turbulence models are adapted to cope with surface roughness impacting the near-wall behaviour compared to a smooth surface. These adjustments in the models correctly predict the skin friction but create a tendency to overpredict the heat transfers compared to experiments. These overpredictions require the use of an additional thermal correction model to lower the heat transfers. Finding the correct numerical parameters to best fit the experimental results is non-trivial, since roughness patterns are often irregular. The objective of this paper is to develop a methodology to calibrate the roughness parameters for a thermal correction model for a rough curved channel test case. First, the design of the experiments allows the generation of metamodels for the prediction of the heat transfer coefficients. The polynomial chaos expansion approach is used to create the metamodels. The metamodels are then successively used with a Bayesian inversion and a genetic algorithm method to estimate the best set of roughness parameters to fit the available experimental results. Both calibrations are compared to assess their strengths and weaknesses. Starting with unknown roughness parameters, this methodology allows calibrating them and obtaining between 4.7% and 10% of average discrepancy between the calibrated RANS heat transfer prediction and the experimental results. The methodology is promising, showing the ability to finely select the roughness parameters to input in the numerical model to fit the experimental heat transfer, without an a priori knowledge of the actual roughness pattern.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Morency, François
Affiliation: Génie mécanique
Date de dépôt: 16 juin 2022 20:33
Dernière modification: 17 juin 2022 13:07
URI: https://espace2.etsmtl.ca/id/eprint/24519

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt