ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Evolving software system families in space and time with feature revisions

Michelon, Gabriela Karoline, Obermann, David, Assuncao, Wesley K. G., Linsbauer, Lukas, Grunbacher, Paul, Fischer, Stefan, Lopez-Herrejon, Roberto E. et Egyed, Alexander. 2022. « Evolving software system families in space and time with feature revisions ». Empirical Software Engineering, vol. 27, nº 5.
Compte des citations dans Scopus : 9.

[thumbnail of Lopez-Herrejon-R-2022-24807.pdf]
Prévisualisation
PDF
Lopez-Herrejon-R-2022-24807.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (3MB) | Prévisualisation

Résumé

Software companies commonly develop and maintain variants of systems, with different feature combinations for different customers. Thus, they must cope with variability in space. Software companies further must cope with variability in time, when updating system vari- ants by revising existing software features. Inevitably, variants evolve orthogonally along these two dimensions, resulting in challenges for software maintenance. Our work addresses this challenge with ECSEST (Extraction and Composition for Systems Evolving in Space and Time), an approach for locating feature revisions and composing variants with different feature revisions. We evaluated ECSEST using feature revisions and variants from six highly configurable open source systems. To assess the correctness of our approach, we compared the artifacts of input variants with the artifacts from the corresponding composed variants based on the implementation of the extracted features. The extracted traces allowed com- posing variants with 99-100% precision, as well as with 97-99% average recall. Regarding the composition of variants with new configurations, our approach can combine differ- ent feature revisions with 99% precision and recall on average. Additionally, our approach retrieves hints when composing new configurations, which are useful to find artifacts that may have to be added or removed for completing a product. The hints help to understand possible feature interactions or dependencies. The average time to locate feature revisions ranged from 25 to 250 seconds, whereas the average time for composing a variant was 18 seconds. Therefore, our experiments demonstrate that ECSEST is feasible and effective.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Lopez-Herrejon, Roberto E.
Affiliation: Génie logiciel et des technologies de l'information
Date de dépôt: 28 juin 2022 21:12
Dernière modification: 25 juill. 2022 18:02
URI: https://espace2.etsmtl.ca/id/eprint/24807

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt