Bensalma, Fatima, Richardson, Glen, Ouakrim, Youssef, Fuentes, Alexandre, Dunbar, Michael, Hagemeister, Nicola et Mezghani, Neila.
2020.
« A combined visualization method for multivariate data analysis. Application to knee kinematic and clinical parameters relationships ».
Applied Sciences, vol. 10, nº 5.
Compte des citations dans Scopus : 2.
Prévisualisation |
PDF
Hagemeister-N-2022-25696.pdf - Version publiée Licence d'utilisation : Creative Commons CC BY. Télécharger (1MB) | Prévisualisation |
Résumé
This paper aims to analyze the correlation structure between the kinematic and clinical parameters of an end-staged knee osteoarthritis population. The kinematic data are a set of characteristics derived from 3D knee kinematic patterns. The clinical parameters include the answers of a clinical questionnaire and the patient’s demographic characteristics. The proposed method performs, first, a regularized canonical correlation analysis (RCCA) to evaluate the multivariate relationship between the clinical and kinematic datasets, and second, a combined visualization method to better understand the relationships between these multivariate data. Results show the efficiency of using different and complementary visual representation tools to highlight hidden relationships and find insights in data.
Type de document: | Article publié dans une revue, révisé par les pairs |
---|---|
Professeur: | Professeur Hagemeister, Nicola |
Affiliation: | Génie des systèmes |
Date de dépôt: | 02 nov. 2022 19:12 |
Dernière modification: | 15 nov. 2022 14:10 |
URI: | https://espace2.etsmtl.ca/id/eprint/25696 |
Actions (Authentification requise)
Dernière vérification avant le dépôt |