ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

A combined visualization method for multivariate data analysis. Application to knee kinematic and clinical parameters relationships

Bensalma, Fatima, Richardson, Glen, Ouakrim, Youssef, Fuentes, Alexandre, Dunbar, Michael, Hagemeister, Nicola et Mezghani, Neila. 2020. « A combined visualization method for multivariate data analysis. Application to knee kinematic and clinical parameters relationships ». Applied Sciences, vol. 10, nº 5.
Compte des citations dans Scopus : 2.

[thumbnail of Hagemeister-N-2022-25696.pdf]
Prévisualisation
PDF
Hagemeister-N-2022-25696.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (1MB) | Prévisualisation

Résumé

This paper aims to analyze the correlation structure between the kinematic and clinical parameters of an end-staged knee osteoarthritis population. The kinematic data are a set of characteristics derived from 3D knee kinematic patterns. The clinical parameters include the answers of a clinical questionnaire and the patient’s demographic characteristics. The proposed method performs, first, a regularized canonical correlation analysis (RCCA) to evaluate the multivariate relationship between the clinical and kinematic datasets, and second, a combined visualization method to better understand the relationships between these multivariate data. Results show the efficiency of using different and complementary visual representation tools to highlight hidden relationships and find insights in data.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Hagemeister, Nicola
Affiliation: Génie des systèmes
Date de dépôt: 02 nov. 2022 19:12
Dernière modification: 15 nov. 2022 14:10
URI: https://espace2.etsmtl.ca/id/eprint/25696

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt