ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

A generic preprocessing architecture for multi-modal IoT sensor data in artificial general intelligence

Dmytryk, Nicholas et Leivadeas, Aris. 2022. « A generic preprocessing architecture for multi-modal IoT sensor data in artificial general intelligence ». Electronics, vol. 11, nº 22.
Compte des citations dans Scopus : 1.

[thumbnail of Leivadeas-A-2022-25962.pdf]
Prévisualisation
PDF
Leivadeas-A-2022-25962.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (2MB) | Prévisualisation

Résumé

A main barrier for autonomous and general learning systems is their inability to understand and adapt to new environments—that is, to apply previously learned abstract solutions to new problems. Supervised learning system functions such as classification require data labeling from an external source and do not have the ability to learn feature representation autonomously. This research details an unsupervised learning method for multi-modal feature detection and evaluation to be used for preprocessing in general learning systems. The learning method details a clustering algorithm that can be applied to any generic IoT sensor data, and a seeded stimulus labeling algorithm impacted and evolved by cross-modal input. The method is implemented and tested in two agents consuming audio and image data, each with varying innate stimulus criteria. Their run-time stimulus changes over time depending on their experiences, while newly experienced features become meaningful without preprogrammed labeling of distinct attributes. The architecture provides interfaces for higher-order cognitive processes to be built on top of the unsupervised preprocessor. This method is unsupervised and modular, in contrast to the highly constrained and pretrained learning systems that exist, making it extendable and well-disposed for use in artificial general intelligence.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Leivadeas, Aris
Affiliation: Génie logiciel et des technologies de l'information
Date de dépôt: 15 déc. 2022 17:37
Dernière modification: 05 janv. 2023 20:35
URI: https://espace2.etsmtl.ca/id/eprint/25962

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt