ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Multiscale analysis for improving texture classification

Ataky, Steve Tsham Mpinda, Saqui, Diego, de Matos, Jonathan, de Souza Britto Junior, Alceu et Lameiras Koerich, Alessandro. 2023. « Multiscale analysis for improving texture classification ». Applied Sciences, vol. 13, nº 3.
Compte des citations dans Scopus : 6.

[thumbnail of Lameiras-Koerich-A-2023-26241.pdf]
Prévisualisation
PDF
Lameiras-Koerich-A-2023-26241.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (786kB) | Prévisualisation

Résumé

Information from an image occurs over multiple and distinct spatial scales. Image pyramid multiresolution representations are a useful data structure for image analysis and manipulation over a spectrum of spatial scales. This paper employs the Gaussian–Laplacian pyramid to separately treat different spatial frequency bands of a texture. First, we generate three images corresponding to three levels of the Gaussian–Laplacian pyramid for an input image to capture intrinsic details. Then, we aggregate features extracted from gray and color texture images using bioinspired texture descriptors, information-theoretic measures, gray-level co-occurrence matrix feature descriptors, and Haralick statistical feature descriptors into a single feature vector. Such an aggregation aims at producing features that characterize textures to their maximum extent, unlike employing each descriptor separately, which may lose some relevant textural information and reduce the classification performance. The experimental results on texture and histopathologic image datasets have shown the advantages of the proposed method compared to state-of-the-art approaches. Such findings emphasize the importance of multiscale image analysis and corroborate that the descriptors mentioned above are complementary.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Lameiras Koerich, Alessandro
Affiliation: Génie logiciel et des technologies de l'information
Date de dépôt: 10 mars 2023 19:11
Dernière modification: 13 mars 2023 14:42
URI: https://espace2.etsmtl.ca/id/eprint/26241

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt