Phyu, Hnin Pann, Naboulsi, Diala et Stanica, Razvan.
2023.
« Machine learning in network slicing - a survey ».
IEEE Access, vol. 11.
pp. 39123-39153.
Compte des citations dans Scopus : 13.
Prévisualisation |
PDF
Naboulsi-D-2023-26516.pdf - Version publiée Licence d'utilisation : Creative Commons CC BY-NC-ND. Télécharger (6MB) | Prévisualisation |
Résumé
5G and beyond networks are expected to support a wide range of services, with highly diverse requirements. Yet, the traditional “one-size-fits-all” network architecture lacks the flexibility to accommodate these services. In this respect, network slicing has been introduced as a promising paradigm for 5G and beyond networks, supporting not only traditional mobile services, but also vertical industries services, with very heterogeneous requirements. Along with its benefits, the practical implementation of network slicing brings a lot of challenges. Thanks to the recent advances in machine learning (ML), some of these challenges have been addressed. In particular, the application of ML approaches is enabling the autonomous management of resources in the network slicing paradigm. Accordingly, this paper presents a comprehensive survey on contributions on ML in network slicing, identifying major categories and sub-categories in the literature. Lessons learned are also presented and open research challenges are discussed, together with potential solutions.
Type de document: | Article publié dans une revue, révisé par les pairs |
---|---|
Professeur: | Professeur Naboulsi, Diala |
Affiliation: | Génie logiciel et des technologies de l'information |
Date de dépôt: | 30 mai 2023 21:14 |
Dernière modification: | 31 mai 2023 15:26 |
URI: | https://espace2.etsmtl.ca/id/eprint/26516 |
Actions (Authentification requise)
Dernière vérification avant le dépôt |