ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Reduced-order modeling for stochastic large-scale and time-dependent flow problems using deep spatial and temporal convolutional autoencoders

Abdedou, Azzedine et Soulaimani, Azzedine. 2023. « Reduced-order modeling for stochastic large-scale and time-dependent flow problems using deep spatial and temporal convolutional autoencoders ». Advanced Modeling and Simulation in Engineering Sciences, vol. 10.

[thumbnail of Soulaimani-A-2023-26755.pdf]
Prévisualisation
PDF
Soulaimani-A-2023-26755.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (2MB) | Prévisualisation

Résumé

A non-intrusive reduced-order model based on convolutional autoencoders is proposed as a data-driven tool to build an efficient nonlinear reduced-order model for stochastic spatiotemporal large-scale flow problems. The objective is to perform accurate and rapid uncertainty analyses of the flow outputs of interest for which the input parameters are deemed uncertain. The data are constituted from a set of high-fidelity snapshots, collected using an inhouse high-fidelity flow solver, which correspond to a sample of the uncertain input parameters. The method uses a 1D-convolutional autoencoder to reduce the spatial dimension of the unstructured meshes used by the flow solver. Another convolutional autoencoder is used for the time compression. The encoded latent vectors, generated from the two compression levels, are then mapped to the input parameters using a regression-based multilayer perceptron. The proposed model allows for rapid predictions for unseen parameter values, allowing the output statistical moments to be computed efficiently. The accuracy of the proposed approach is compared to that of the linear reduced-order technique based on an artificial neural network through two benchmark tests (the one-dimensional Burgers and Stoker’s solutions) and a hypothetical dam break flow problem, with an unstructured mesh and over a complex bathymetry river. The numerical results show that the proposed methods present strong predictive capabilities to accurately approximate the statistical moments of the outputs. In particular, the predicted statistical moments are oscillations-free, unlike those obtained with the traditional proper orthogonal decomposition method. The proposed reduction framework is simple to implement and can be applied to other parametric and time-dependent problems governed by partial differential equations, which are commonly encountered in many engineering and science problems. Keywords: Uncertainty propagation, Reduced-order modeling, Deep learning,

Type de document: Article publié dans une revue, révisé par les pairs
Informations complémentaires: Identifiant de l'article : 7
Professeur:
Professeur
Soulaïmani, Azzeddine
Affiliation: Génie mécanique
Date de dépôt: 28 juin 2023 18:52
Dernière modification: 13 mars 2024 19:02
URI: https://espace2.etsmtl.ca/id/eprint/26755

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt