ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Determining regional brain growth in premature and mature infants in relation to age at MRI using deep neural networks

Beizaee, Farzad, Bona, Michele, Desrosiers, Christian, Dolz, Jose et Lodygensky, Gregory. 2023. « Determining regional brain growth in premature and mature infants in relation to age at MRI using deep neural networks ». Scientific Reports, vol. 13, nº 1.
Compte des citations dans Scopus : 1.

[thumbnail of Desrosiers-C-2023-27633.pdf]
Prévisualisation
PDF
Desrosiers-C-2023-27633.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (1MB) | Prévisualisation

Résumé

Neonatal MRIs are used increasingly in preterm infants. However, it is not always feasible to analyze this data. Having a tool that assesses brain maturation during this period of extraordinary changes would be immensely helpful. Approaches based on deep learning approaches could solve this task since, once properly trained and validated, they can be used in practically any system and provide holistic quantitative information in a matter of minutes. However, one major deterrent for radiologists is that these tools are not easily interpretable. Indeed, it is important that structures driving the results be detailed and survive comparison to the available literature. To solve these challenges, we propose an interpretable pipeline based on deep learning to predict postmenstrual age at scan, a key measure for assessing neonatal brain development. For this purpose, we train a state-of-the-art deep neural network to segment the brain into 87 different regions using normal preterm and term infants from the dHCP study. We then extract informative features for brain age estimation using the segmented MRIs and predict the brain age at scan with a regression model. The proposed framework achieves a mean absolute error of 0.46 weeks to predict postmenstrual age at scan. While our model is based solely on structural T2-weighted images, the results are superior to recent, arguably more complex approaches. Furthermore, based on the extracted knowledge from the trained models, we found that frontal and parietal lobes are among the most important structures for neonatal brain age estimation.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Desrosiers, Christian
Dolz, José
Affiliation: Génie logiciel et des technologies de l'information, Génie logiciel et des technologies de l'information
Date de dépôt: 13 sept. 2023 17:45
Dernière modification: 16 oct. 2023 19:25
URI: https://espace2.etsmtl.ca/id/eprint/27633

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt