ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

A novel apparatus for the simulation of powder spreading procedures in powder-bed-based additive manufacturing processes: Design, calibration, and case study

Brika, Salah Eddine et Brailovski, Vladimir. 2023. « A novel apparatus for the simulation of powder spreading procedures in powder-bed-based additive manufacturing processes: Design, calibration, and case study ». Journal of Manufacturing and Materials Processing, vol. 7, nº 4.
Compte des citations dans Scopus : 2.

[thumbnail of Brailosvki-V-2023-27635.pdf]
Prévisualisation
PDF
Brailosvki-V-2023-27635.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (34MB) | Prévisualisation

Résumé

Powder-bed-based additive manufacturing processes (PBAM) are sensitive to variations in powder feedstock characteristics, and yet the link between the powder properties and process performance is still not well established, which complicates the powder selection, quality control, and process improvement processes. An accurate assessment of the powder characteristics and behavior during recoating is important and must include the flow and packing properties of the powders, which are dependent on the application conditions. To fulfill the need for suitable powder testing techniques, a novel apparatus is developed to reproduce the generic PBAM powder spreading procedure and allow the measurements of the powder bed density, surface uniformity, and spreading forces as functions of the powder characteristics and spreading conditions, including the spreading speed and the type of spreading mechanism. This equipment could be used for research and development purposes as well as for the quality control of the PBAM powder feedstock, as showcased in this paper using a gas-atomized Ti-6Al-4V powder (D10 = 25.3 ▯m, D50 = 35.8 ▯m and D90 = 46.4 ▯m) spread using a rigid blade by varying the recoating speed from 100 to 500 mm/s and the layer thickness from 30 to 100 ▯m.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Brailovski, Vladimir
Affiliation: Génie mécanique
Date de dépôt: 13 sept. 2023 17:45
Dernière modification: 17 oct. 2023 18:13
URI: https://espace2.etsmtl.ca/id/eprint/27635

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt