ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Real-time sensor-embedded neural network for human activity recognition

Shakerian, Ali, Douet, Victor, Shoaraye Nejati, Amirhossein et Landry, René Jr. 2023. « Real-time sensor-embedded neural network for human activity recognition ». Sensors, vol. 23, nº 19.
Compte des citations dans Scopus : 3.

[thumbnail of Landry-R-2023-27956.pdf]
Prévisualisation
PDF
Landry-R-2023-27956.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (895kB) | Prévisualisation

Résumé

This article introduces a novel approach to human activity recognition (HAR) by presenting a sensor that utilizes a real-time embedded neural network. The sensor incorporates a low-cost microcontroller and an inertial measurement unit (IMU), which is affixed to the subject’s chest to capture their movements. Through the implementation of a convolutional neural network (CNN) on the microcontroller, the sensor is capable of detecting and predicting the wearer’s activities in real-time, eliminating the need for external processing devices. The article provides a comprehensive description of the sensor and the methodology employed to achieve real-time prediction of subject behaviors. Experimental results demonstrate the accuracy and high inference performance of the proposed solution for real-time embedded activity recognition

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Landry, René Jr
Affiliation: Génie électrique
Date de dépôt: 08 nov. 2023 15:24
Dernière modification: 18 déc. 2023 15:58
URI: https://espace2.etsmtl.ca/id/eprint/27956

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt