ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Surface roughness in RANS applied to aircraft ice accretion simulation: A review

Ignatowicz, Kevin, Morency, François et Beaugendre, Héloïse. 2023. « Surface roughness in RANS applied to aircraft ice accretion simulation: A review ». Fluids, vol. 8, nº 10.
Compte des citations dans Scopus : 1.

[thumbnail of Morency-F-2023-28015.pdf]
Prévisualisation
PDF
Morency-F-2023-28015.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (3MB) | Prévisualisation

Résumé

Experimental and numerical fluid dynamics studies highlight a change of flow structure in the presence of surface roughness. The changes involve both wall heat transfer and skin friction, and are mainly restricted to the inner region of the boundary layer. Aircraft in-flight icing is a typical application where rough surfaces play an important role in the airflow structure and the subsequent ice growth. The objective of this work is to investigate how surface roughness is tackled in RANS with wall resolved boundary layers for aeronautics applications, with a focus on ice-induced roughness. The literature review shows that semi-empirical correlations were calibrated on experimental data to model flow changes in the presence of roughness. The correlations for RANS do not explicitly resolve the individual roughness. They principally involve turbulence model modifications to account for changes in the velocity and temperature profiles in the near-wall region. The equivalent sand grain roughness (ESGR) approach emerges as a popular metric to characterize roughness and is employed as a length scale for the RANS model. For in-flight icing, correlations were developed, accounting for both surface geometry and atmospheric conditions. Despite these research efforts, uncertainties are present in some specific conditions, where space and time roughness variations make the simulations difficult to calibrate. Research that addresses this gap could help improve ice accretion predictions.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Morency, François
Affiliation: Génie mécanique
Date de dépôt: 16 nov. 2023 15:52
Dernière modification: 16 nov. 2023 19:45
URI: https://espace2.etsmtl.ca/id/eprint/28015

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt