ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

A physics-informed machine learning model for time-dependent wave runup prediction

Téléchargements

Téléchargements par mois depuis la dernière année

Plus de statistiques...

Saviz Naeini, Saeed et Snaiki, Reda. 2024. « A physics-informed machine learning model for time-dependent wave runup prediction ». Ocean Engineering, vol. 295.
Compte des citations dans Scopus : 1.

[thumbnail of Snaiki-R-2024-28402.pdf]
Prévisualisation
PDF
Snaiki-R-2024-28402.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY-NC-ND.

Télécharger (7MB) | Prévisualisation

Résumé

Wave runup is a critical factor that affects coastal flooding, shoreline changes, and the damage to coastal structures. Climate change is also expected to amplify the impact of wave runup on coastal areas. Therefore, fast and accurate wave runup estimation is essential for effective coastal engineering design and management. However, predicting the time-dependent wave runup is challenging due to the intrinsic nonlinearities and nonstationarity of the process, even with the use of the most advanced machine learning techniques. In this study, a physics-informed machine learning-based approach is proposed to efficiently and accurately simulate time-series wave runup. The methodology combines the computational efficiency of the Surfbeat (XBSB) mode with the accuracy of the nonhydrostatic (XBNH) mode of the XBeach model. Specifically, a conditional generative adversarial network (cGAN) is used to map the image representation of wave runup from XBSB to the corresponding image from XBNH. These images are generated by first converting wave runup signals into timefrequency scalograms and then transforming them into image representations. The cGAN model achieves improved performance in image-to-image mapping tasks by incorporating physics-based knowledge from XBSB. After training the model, the high-fidelity XBNH-based scalograms can be predicted, which are then used to reconstruct the time-series wave runup using the inverse wavelet transform. The simulation results underscore the efficiency and robustness of the proposed model in predicting wave runup, suggesting its potential value for applications in risk assessment and management.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Snaiki, Reda
Affiliation: Génie de la construction
Date de dépôt: 04 mars 2024 15:49
Dernière modification: 11 mars 2024 16:13
URI: https://espace2.etsmtl.ca/id/eprint/28402

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt