ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

A computer vision-based framework for snow removal operation routing

Karaa, Mohamed, Ghazzai, Hakim, Massoud, Yehia et Sboui, Lokman. 2024. « A computer vision-based framework for snow removal operation routing ». IEEE Open Journal of Circuits and Systems, vol. 5. pp. 81-91.
Compte des citations dans Scopus : 1.

[thumbnail of Sboui-L-2024-28635.pdf]
Prévisualisation
PDF
Sboui-L-2024-28635.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY-NC-ND.

Télécharger (6MB) | Prévisualisation

Résumé

During snowfall, the utility of the road infrastructure is critical. Roads must be effectively cleared to ensure access to important locations and services. In this paper, we present an end-to-end framework for snow removal vehicle routing based on road priority. We offer an artificial intelligence-based image-based approach for estimating snow depth and traffic volume on roads. For segments monitored by CCTV cameras, we exploit images and supervised learning models to perform this task. For unmonitored roads, we use the Graph Convolutional Network architecture to predict parameters in a semi-supervised manner. Following that, we assign priority weights to all graph edges as a function of image-based attributes and road categories. We test the method using a real-world example, simulating snow removal within a study area in Montreal, Quebec, Canada. As input for the framework, we collect CCTV image data and combine it with a 2D map. As a result, more efficient snow removal operation can be achieved by optimizing the trajectories of trucks based on the computer vision module outputs.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Sboui, Lokman
Affiliation: Génie des systèmes
Date de dépôt: 10 mai 2024 18:58
Dernière modification: 13 mai 2024 15:30
URI: https://espace2.etsmtl.ca/id/eprint/28635

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt