ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Industrial fault detection employing meta ensemble model based on contact sensor ultrasonic signal

Moshrefi, Amir Hossein, Tawfik, Hani H., Elsayed, Mohannad Y. et Nabki, Frederic. 2024. « Industrial fault detection employing meta ensemble model based on contact sensor ultrasonic signal ». Sensors, vol. 24, nº 7.
Compte des citations dans Scopus : 2.

[thumbnail of Nabki-F-2024-28644.pdf]
Prévisualisation
PDF
Nabki-F-2024-28644.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (11MB) | Prévisualisation

Résumé

Ultrasonic diagnostics is the earliest way to predict industrial faults. Usually, a contact microphone is employed for detection, but the recording will be contaminated with noise. In this paper, a dataset that contains 10 main faults of pipelines and motors is analyzed from which 30 different features in the time and frequency domains are extracted. Afterward, for dimensionality reduction, principal component analysis (PCA), linear discriminant analysis (LDA), and t-distributed stochastic neighbor embedding (t-SNE) are performed. In the subsequent phase, recursive feature elimination (RFE) is employed as a strategic method to analyze and select the most relevant features for the classifiers. Next, predictive models consisting of k-Nearest Neighbor (KNN), Logistic Regression (LR), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Support Vector Machine (SVM) are employed. Then, in order to solve the classification problem, a stacking classifier based on a meta-classifier which combines multiple classification models is introduced. Furthermore, the k-fold cross-validation technique is employed to assess the effectiveness of the model in handling new data for the evaluation of experimental results in ultrasonic fault detection. With the proposed method, the accuracy is around 5% higher over five cross folds with the least amount of variation. The timing evaluation of the meta model on the 64 MHz Cortex M4 microcontroller unit (MCU) revealed an execution time of 11 ms, indicating it could be a promising solution for real-time monitoring

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Nabki, Frédéric
Affiliation: Génie électrique
Date de dépôt: 10 mai 2024 18:54
Dernière modification: 13 mai 2024 14:59
URI: https://espace2.etsmtl.ca/id/eprint/28644

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt