ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Advanced wind turbine blade inspection with hyperspectral imaging and 3D convolutional neural networks for damage detection

Rizk, Patrick, Rizk, Frederic, Karganroudi, Sasan Sattarpanah, Ilinca, Adrian, Younes, Rafic et Khoder, Jihan. 2024. « Advanced wind turbine blade inspection with hyperspectral imaging and 3D convolutional neural networks for damage detection ». Energy and AI, vol. 16.
Compte des citations dans Scopus : 2.

[thumbnail of Ilinca-A-2024-28649.pdf]
Prévisualisation
PDF
Ilinca-A-2024-28649.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY-NC.

Télécharger (4MB) | Prévisualisation

Résumé

In the context of global efforts to mitigate climate change by pursuing sustainable energy sources, wind energy has emerged as a critical contributor. However, the wind energy industry faces substantial challenges in maintaining and preserving the integrity of wind turbine blades. Timely and accurate detection and classification of blade faults, encompassing issues such as cracks, erosion, and ice buildup, are imperative to uphold wind turbines' ongoing efficiency and safety. This study introduces an inventive approach that amalgamates hyperspectral imaging and 3D Convolutional Neural Networks (CNNs) to augment the precision and efficiency of wind turbine blade fault detection and classification. Hyperspectral imaging is harnessed to capture comprehensive spectral information from blade surfaces, facilitating exact fault identification. The process is streamlined through Incremental Principal Component Analysis (IPCA), reducing data dimensions while maintaining integrity. The 3D CNN model demonstrates remarkable performance, achieving high accuracy in detecting all fault categories in full-band hyperspectral images. The model retains high accuracy even with dimensionality reduction to 20 spectral bands. The reduced processing time of the 20-band image enhances the practicality of real-world applications, thereby reducing downtime and maintenance expenditures. This research represents a significant advancement in wind turbine blade inspection, contributing to the sustainability and dependability of wind energy systems and furthering the cause of a cleaner and more sustainable energy future as part of the broader fight against climate change.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Ilinca, Adrian
Affiliation: Génie mécanique
Date de dépôt: 10 mai 2024 18:55
Dernière modification: 13 mai 2024 14:57
URI: https://espace2.etsmtl.ca/id/eprint/28649

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt