ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Comparative evaluation of deep neural network performance for point cloud-based IFC object classification

Seydgar, Majid, Poirier, Erik A. et Motamedi, Ali. 2024. « Comparative evaluation of deep neural network performance for point cloud-based IFC object classification ». IEEE Access, vol. 12. pp. 108303-108312.

[thumbnail of Poirier-E-2024-29375.pdf]
Prévisualisation
PDF
Poirier-E-2024-29375.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (1MB) | Prévisualisation

Résumé

Point cloud-based deep neural networks (PC-DNNs) has seen growing interest in the construction domain due to their remarkable ability to enhance Building Information Modeling (BIM)- related tasks. Among these tasks, Industry Foundation Classes (IFC) object classification using PC-DNNs has become an active research topic. This focus aims to mitigate classification discrepancies that occur during the interoperability of BIM tools for information exchange. However, existing studies have not fully investigated the potential of the PC-DNN models for IFC object classification. This limitation is due to the reliance on a limited number of PC-DNN models trained on small, private datasets that are not openly accessible. To address this knowledge gap, this study evaluates diverse state-of-the-art PC-DNN models for IFC object classification. Our study provides a comprehensive analysis of how different PC-DNN components and loss functions affect IFC classification, utilizing two public IFC datasets: IFCNet and BIMGEOM. Experimental results offer a detailed comparison across metrics such as accuracy, learning progression, computation time, and model parameters.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Poirier, Erik Andrew
Motamedi, Ali
Affiliation: Génie de la construction, Génie de la construction
Date de dépôt: 04 sept. 2024 19:46
Dernière modification: 12 sept. 2024 18:40
URI: https://espace2.etsmtl.ca/id/eprint/29375

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt