ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

PdM-FSA: Predictive maintenance framework with fault severity awareness in Industry 4.0 using machine learning

Moulla, Donatien Koulla, Mnkandla, Ernest, Aboubakar, Moussa, Ari, Ado Adamou Abba et Abran, Alain. 2024. « PdM-FSA: Predictive maintenance framework with fault severity awareness in Industry 4.0 using machine learning ». International Journal of Electrical and Computer Engineering, vol. 14, nº 6. pp. 7211-7223.

[thumbnail of Abran-A-2024-29789.pdf]
Prévisualisation
PDF
Abran-A-2024-29789.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY-SA.

Télécharger (733kB) | Prévisualisation

Résumé

Predictive maintenance contributes to Industry 4.0, as it enables a decrease in maintenance costs and downtime while aiming to increase production and return on investment. Despite the increasing utilization of machine learning techniques in predictive maintenance in industrial systems over the past few years, several challenges remain to be addressed in the implementation of ML, including the quality of the data collected, resource constraints, and equipment heterogeneity. This study proposes an adaptive framework for predictive maintenance in the context of Industry 4.0, specifically in internet of things (IoT) systems, using machine learning (ML) models. In particular, this study introduces PdM-FSA, a new framework based on an ensemble classifier that takes advantage of four widely adopted ML models in the predictive maintenance literature: random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost), and k-nearest neighbors (KNN). The performance evaluation results showed that the PdM-FSA framework can perform well for predictive maintenance according to the severity of equipment malfunctions in a smart factory. The results of this study provide significant knowledge to researchers and practitioners on predictive maintenance in the context of Industry 4.0. and enables the optimization of processes and improves productivity.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Abran, Alain
Affiliation: Génie logiciel et des technologies de l'information
Date de dépôt: 05 nov. 2024 19:38
Dernière modification: 08 nov. 2024 15:05
URI: https://espace2.etsmtl.ca/id/eprint/29789

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt