Zhang, Yujing, Coulombe, Stéphane, Coudoux, François-Xavier, Guichemerre, Alexis et Corlay, Patrick.
2024.
« Robust video list decoding in error-prone transmission systems using a deep learning approach ».
IEEE Access, vol. 12.
pp. 170632-170647.
Prévisualisation |
PDF
Coulombe-S-2024-30394.pdf - Version publiée Licence d'utilisation : Creative Commons CC BY-NC-ND. Télécharger (5MB) | Prévisualisation |
Résumé
This paper introduces a novel deep-learning assisted video list decoding method for error-prone video transmission systems. Unlike traditional list decoding techniques, our proposed system uses a Transformer-based no-reference image quality assessment method to select the highest-scoring reconstructed video candidate after reception. Three new components are defined and used in the Transformer-assisted image quality evaluation metric: neighborhood-based patch fidelity aggregation, discriminant color texture transformation and ranking-constrained penalty loss function. We have also created our own database of non-uniformly distorted images, similar to those that might result from transmission errors, in a High EfficiencyVideo Coding (HEVC) context. In our specific testing context, our improved Transformer-assisted method has a decision accuracy of 100% for intra-coded image, while, for errors occurring in an inter image, it is 96%. Notably, in the few cases where a wrong choice is made, the selected candidate’s quality remains similar to the intact frame. Code: https://github.com/Yujing0926/Robust-Video-List-Decoding- Using-a-Deep-Learning-Approach.
Type de document: | Article publié dans une revue, révisé par les pairs |
---|---|
Professeur: | Professeur Coulombe, Stéphane |
Affiliation: | Génie logiciel et des technologies de l'information |
Date de dépôt: | 03 janv. 2025 21:16 |
Dernière modification: | 27 janv. 2025 20:07 |
URI: | https://espace2.etsmtl.ca/id/eprint/30394 |
Actions (Authentification requise)
Dernière vérification avant le dépôt |