ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

LSTM-based state-of-charge estimation and user interface development for lithium-ion battery management

Benallal, Abdellah, Cheggaga, Nawal, Hebib, Amine et Ilinca, Adrian. 2025. « LSTM-based state-of-charge estimation and user interface development for lithium-ion battery management ». World Electric Vehicle Journal, vol. 16, nº 3.

[thumbnail of Ilinca-A-2025-30761.pdf]
Prévisualisation
PDF
Ilinca-A-2025-30761.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (5MB) | Prévisualisation

Résumé

State-of-charge (SOC) estimation is pivotal in optimizing lithium-ion battery management systems (BMSs), ensuring safety, performance, and longevity across various applications. This study introduces a novel SOC estimation framework that uniquely integrates Long Short-Term Memory (LSTM) neural networks with Hyperband-driven hyperparameter optimization, a combination not extensively explored in the literature. A comprehensive experimental dataset is created using data of LG 18650HG2 lithium-ion batteries subjected to diverse operational cycles and thermal conditions. The proposed framework demonstrates superior prediction accuracy, achieving a Mean Square Error (MSE) of 0.0023 and a Mean Absolute Error (MAE) of 0.0043, outperforming traditional estimation methods. The Hyperband optimization algorithm accelerates model training and enhances adaptability to varying operating conditions, making it scalable for diverse battery applications. Developing an intuitive, real-time user interface (UI) tailored for practical deployment bridges the gap between advanced SOC estimation techniques and user accessibility. Detailed residual and regression analyses confirm the proposed solution’s robustness, generalizability, and reliability. This work offers a scalable, accurate, and userfriendly SOC estimation solution for commercial BMSs, with future research aimed at extending the framework to other battery chemistries and hybrid energy systems.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Ilinca, Adrian
Affiliation: Génie mécanique
Date de dépôt: 10 avr. 2025 18:06
Dernière modification: 17 avr. 2025 15:09
URI: https://espace2.etsmtl.ca/id/eprint/30761

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt