Imran, Ali, Beltrame, Giovanni et St-Onge, David.
2025.
« GNN-based decentralized perception in multi-robot systems for predicting worker actions ».
IEEE Robotics and Automation Letters, vol. 10, nº 6.
pp. 6336-6343.
![]() |
PDF
St-Onge-D-2025-30850.pdf - Version acceptée Accès restreint à : Administrateur seulement jusqu'au 2 mai 2027. Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur. Télécharger (42MB) | Demande de copie |
Résumé
In industrial environments, predicting human actions is essential for ensuring safe and effective collaboration between humans and robots. This paper introduces a perception framework that enables mobile robots to understand and share information about human actions in a decentralized way. The framework first allows each robot to build a spatial graph representing its surroundings, which it then shares with other robots. This shared spatial data is combined with temporal information to track human behavior over time. A swarminspired decision-making process is used to ensure all robots agree on a unified interpretation of the human’s actions. Results show that adding more robots and incorporating longer time sequences improve prediction accuracy. Additionally, the consensus mechanism increases system resilience, making the multi-robot setup more reliable in dynamic industrial settings.
Type de document: | Article publié dans une revue, révisé par les pairs |
---|---|
Professeur: | Professeur St-Onge, David |
Affiliation: | Génie mécanique |
Date de dépôt: | 23 avr. 2025 18:06 |
Dernière modification: | 22 mai 2025 16:32 |
URI: | https://espace2.etsmtl.ca/id/eprint/30850 |
Actions (Authentification requise)
![]() |
Dernière vérification avant le dépôt |