ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Atomic layer deposition-modified bifunctional electrocatalysts for rechargeable zinc-air batteries: Boosting activity and cycle life

Dong, Fang, Chen, Zhangsen, Chen, Ning, Zhang, Gaixia et Sun, Shuhui. 2025. « Atomic layer deposition-modified bifunctional electrocatalysts for rechargeable zinc-air batteries: Boosting activity and cycle life ». Advanced Energy Materials.
Compte des citations dans Scopus : 1. (Sous presse)

[thumbnail of Zhang-G-2025-30958.pdf]
Prévisualisation
PDF
Zhang-G-2025-30958.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY-NC-ND.

Télécharger (2MB) | Prévisualisation
URLs Apparentées:

Résumé

The integration of transition metal-carbon composites has shown remarkable potential in achieving superior bifunctional electrocatalytic activity and robust stability in rechargeable zinc-air batteries (ZABs), primarily through electronic structure modulation and strategic structural design. While significant research is dedicated to the initial structure and performance of bifunctional electrocatalysts for rechargeable ZABs, their dynamic evolution during charge–discharge cycling remains underexplored. In this study, CoFe nanoparticles are encapsulated within carbon nanotubes co-doped with nitrogen and phosphorus (NPC) to mitigate dissolution and erosion risks. Further, the catalyst surface (CoFe-NPC) is precisely modified with a thin layer of nickel oxide (NiO) via atomic layer deposition (ALD), forming a protective layer with catalytic activity. The resulting ALD-modified catalyst, CoFe-NPC@NiO, exhibits outstanding bifunctional performance (▯E = 0.592 V) for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Notably, the liquid flow ZAB using the CoFe-NPC@NiO cathode demonstrates exceptional rechargeable stability (2700 h, ≈4 months). Theoretical calculations and in situ X-ray absorption spectroscopy (XAS) analyses reveal that NiO modification significantly enhances both the catalytic activity and stability of the electrocatalyst. This work will provide valuable insights into the design of advanced electrocatalysts, facilitating advancements in activity enhancement, stability improvement, and selectivity optimization.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Zhang, Gaixia
Affiliation: Génie électrique
Date de dépôt: 22 mai 2025 16:15
Dernière modification: 02 juin 2025 18:56
URI: https://espace2.etsmtl.ca/id/eprint/30958

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt