Iqbal, Saeed, Choudhry, Imran Arshad, Ullah, Inam, Kaur, Kuljeet, Choi, Bong Jun et Hassan, Mohammad Mehedi.
2025.
« Domain adaptive FL for edge-enabled privacy-preserving MRI analysis ».
Alexandria Engineering Journal, vol. 128.
pp. 324-339.
Prévisualisation |
PDF
Kaur-K-2025-31062.pdf - Version publiée Licence d'utilisation : Creative Commons CC BY-NC-ND. Télécharger (4MB) | Prévisualisation |
Résumé
Data heterogeneity, privacy leakage challenges, the ineffectiveness of conventional collaborative learning techniques, and unresolved managing non-IID data distributions are some of the major obstacles to implementing artificial intelligence (AI) in healthcare. Federated learning (FL) frameworks frequently have trouble distinguishing between privacy protection and model accuracy, especially when used for delicate medical imaging applications. This study presents a novel framework that synergizes federated learning (FL) with edge computing to address these issues while safeguarding patient privacy. Our proposed Domain Adaptive Federated (DAD) learning approach effectively mitigates both inter-client and intra-client data heterogeneity, enabling collaborative model training across diverse medical imaging modalities (MRI, CT, PET) through cross-domain adaptation. Experimental evaluations on MRI brain segmentation datasets demonstrate the superior performance of DAD compared to traditional FL methods, as evidenced by significant improvements in F1-score (96.3), sensitivity (96.0), specificity (97.1), and AUC (96.7). This enhanced accuracy and robustness in handling heterogeneous and privacy-sensitive data render DAD an ideal candidate for privacy-preserving AI in consumer healthcare. By pioneering innovative strategies for collaborative model training and data privacy, this research contributes to the emerging field of edge intelligence, paving the way for improved patient outcomes while adhering to stringent confidentiality and ethical mandates.
Type de document: | Article publié dans une revue, révisé par les pairs |
---|---|
Professeur: | Professeur Kaur, Kuljeet |
Affiliation: | Génie électrique |
Date de dépôt: | 30 juin 2025 20:30 |
Dernière modification: | 07 août 2025 23:21 |
URI: | https://espace2.etsmtl.ca/id/eprint/31062 |
Actions (Authentification requise)
![]() |
Dernière vérification avant le dépôt |