ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Numerical investigation of engine position effects on contrail formation and evolution in the near-field of a realistic aircraft configuration

Annunziata, Rémy, Bonne, Nicolas et Garnier, François. 2025. « Numerical investigation of engine position effects on contrail formation and evolution in the near-field of a realistic aircraft configuration ». Aerospace Science and Technology, vol. 167.

[thumbnail of Garnier-F-2025-31474.pdf]
Prévisualisation
PDF
Garnier-F-2025-31474.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (2MB) | Prévisualisation

Résumé

The present study investigates the impact of engine position on contrail formation and near-field evolution in a realistic three-dimensional aircraft configuration. Detailed numerical simulations are conducted using a Reynolds-Averaged Navier-Stokes (RANS) approach coupled with mesh adaptation techniques. A Eulerian microphysical model is used to characterize contrail ice crystal properties and their evolution under varying dilution conditions. The setup is based on a Boeing 777-like geometry, including fuselage, wings, engines, and tailplane. Two microphysical activation scenarios are considered: one incorporating adsorption-based ice nucleation and the other assuming fully activated soot particles. The latter for two soot number emission indices. The dilution process and wake structure exhibit a strong dependence on engine placement, which significantly influences plume saturation. In highly diluted configurations, enhanced early-stage mixing reduces plume temperature and increases relative humidity, favoring the growth of larger ice crystals. Depending on the soot number concentration, vapor depletion effects may outweigh dilution-driven changes in water vapor availability. In adsorption-limited activation scenarios, increased dilution reduces the concentration of sulfur species, leading to a lower activation fraction and the formation of smaller ice crystals. Additionally, across the scenarios, the modified jet-vortex interaction alters particle distribution and their access to water vapor, further shaping their growth. These effects ultimately impact the contrail's optical properties, particularly its optical thickness.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Garnier, François
Affiliation: Génie aérospatial
Date de dépôt: 21 août 2025 14:22
Dernière modification: 24 sept. 2025 22:12
URI: https://espace2.etsmtl.ca/id/eprint/31474

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt