ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Advancing nanoporous arrays: Hierarchical NiS@Cu-Ni nanoporous arrays for ultra-stable lithium-ion battery anodes

Kefene, Esayas Berhanu. 2025. « Advancing nanoporous arrays: Hierarchical NiS@Cu-Ni nanoporous arrays for ultra-stable lithium-ion battery anodes ». Communication lors de la conférence : CSME-CFDSC-CSR 2025 International Congress (Montreal, QC, Canada, May 25-28, 2025).

[thumbnail of 19 - Advancing nanoporous arrays_ Hierar.pdf]
Prévisualisation
PDF
19 - Advancing nanoporous arrays_ Hierar.pdf - Version publiée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (101kB) | Prévisualisation

Résumé

Transition metal sulfides have emerged as promising high-capacity anode materials for lithium-ion batteries, though their practical application is hindered by structural instability and poor charge transfer kinetics. This study demonstrates a breakthrough three-dimensional nanoporous NiS@Cu-Ni electrode featuring vertically aligned column arrays (3D NiS@CNCA) fabricated through a hierarchical electrodeposition strategy. The unique architecture comprises conductive Cu-Ni nanoporous columns grown directly on nickel foam current collectors, providing continuous electron pathways, while the conformal NiS coating enables efficient lithium-ion storage. Structural characterization reveals the columnar design's critical role in accommodating volume changes during cycling. Electrochemical testing shows exceptional performance, with an initial areal capacity of 2.34 mAh cm?² at 0.5 mA cm?² and 91.4% capacity retention after 250 cycles. The electrode maintains 1.99 mAh cm?² even at elevated current density (3.2 mA cm?²), demonstrating remarkable rate capability. These results highlight how the synergistic combination of nanoporous column arrays and bimetallic conductivity networks can simultaneously address the key challenges of structural stability and charge transport in conversion-type electrode materials. The developed architecture provides a scalable template for designing high-performance energy storage devices that combine high capacity with long-term cyclability.

Type de document: Communication (Communication)
Informations complémentaires: Progress in Canadian Mechanical Engineering, Volume 8. Co-chairs: Lucas A. Hof, Giuseppe Di Labbio, Antoine Tahan, Marlène Sanjosé, Sébastien Lalonde and Nicole R. Demarquette.
Date de dépôt: 18 déc. 2025 14:18
Dernière modification: 18 déc. 2025 14:18
URI: https://espace2.etsmtl.ca/id/eprint/31964

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt