ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Deployable composite panel for the electromagnetic deorbitation of satellites

Dumitru, Dorian Stefan, Tabiai, Ilyass et Melancon, David. 2025. « Deployable composite panel for the electromagnetic deorbitation of satellites ». Communication lors de la conférence : CSME-CFDSC-CSR 2025 International Congress (Montreal, QC, Canada, May 25-28, 2025).

[thumbnail of 454 - Deployable composite panel for the.pdf]
Prévisualisation
PDF
454 - Deployable composite panel for the.pdf - Version publiée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (265kB) | Prévisualisation

Résumé

By 2030, the number of satellites orbiting the Earth is expected to exceed 1.7 million, contributing to an increase in space junk comprised of decommissioned satellites and collision fragments. To address this issue, the United Nations’ Space 2030 agenda calls for satellite providers to implement debris mitigation plans. Conventional deorbiting technologies, such as propulsion and robotic systems, are complex and add significant weight to the structure. Electromagnetic (EM) tethers, deployed at the satellite’s end-of-life, offer a lighter alternative by generating drag forces when interacting with the Earth’s EM field. However, these tethers remain non-functional deadweight during the satellite’s mission. Here, we propose integrating EM tethers directly into the satellite’s structure as fiber reinforcements within composite panels. At launch, the panels provide structural integrity to withstand vibrations. Once in orbit, controlled thermal degradation of the matrix triggers the passive deployment of the fibers into preprogrammed shapes, generating EM drag. Using a kinetic model, we first characterize deorbiting performance as a function of tether geometry, comparing simple (linear, circular) and more complex (zigzag, spider-web-inspired) configurations. We then present a proof-of-concept prototype to demonstrate the tether can self-deploy from a composite panel. The prototype is fabricated using 3D printing by integrating a nylon wire into a polyvinyl alcohol (PVA) panel. Upon immersion in water for 24 hours, the PVA dissolves, deploying the tether. We show that knotting the nylon in specific locations enables control over the final deployed shape. Our results highlight the potential of multifunctional composite panels that integrate EM deorbiting technologies directly into satellite structures.

Type de document: Communication (Communication)
Informations complémentaires: Progress in Canadian Mechanical Engineering, Volume 8. Co-chairs: Lucas A. Hof, Giuseppe Di Labbio, Antoine Tahan, Marlène Sanjosé, Sébastien Lalonde and Nicole R. Demarquette.
Professeur:
Professeur
Tabiai, Ilyass
Affiliation: Génie mécanique
Date de dépôt: 18 déc. 2025 14:24
Dernière modification: 18 déc. 2025 14:24
URI: https://espace2.etsmtl.ca/id/eprint/32011

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt