ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Multiscale numerical simulation of flow in porous media using 3D digital twin models from computed tomography

Hammouti, Abdelkader et Pham Van Bang, Damien. 2025. « Multiscale numerical simulation of flow in porous media using 3D digital twin models from computed tomography ». Communication lors de la conférence : CSME-CFDSC-CSR 2025 International Congress (Montreal, QC, Canada, May 25-28, 2025).

[thumbnail of 194 - Multiscale numerical simulation of.pdf]
Prévisualisation
PDF
194 - Multiscale numerical simulation of.pdf - Version publiée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (75kB) | Prévisualisation

Résumé

Over the past decade, advancements in the numerical resolution of the Navier-Stokes equations for multiphase flow modeling have enabled the study of key transport processes in porous media while accounting for non-Darcian effects, including inertial, boundary, and variable porosity influences. Simultaneously, improvements in post-processing techniques for CT-scan images (such as reconstruction and segmentation) applied to porous material samples have made the process increasingly reliable. As a result, integrating real and complex geometries from CT scans into numerical simulations has become a cutting-edge topic in scientific research. This study explores different numerical approaches that utilize Computed Tomography (CT) data for porous media modeling, focusing on intricate couplings between flow dynamics and fluid-solid interactions. We present a workflow for generating a 3D numerical model from CT-scan images of porous media for Computational Fluid Dynamics (CFD) simulations. The uncertainties in porosity and permeability are assessed using CT-scan datasets of a reference material—assemblies of monodisperse glass beads—for which analytical and empirical solutions are available in the literature. Meshes are generated using the open-source platform Salome, and numerical simulations are conducted with Code_Saturne, a multiphysics CFD software based on a finite-volume approach, which supports arbitrary cell types and grid structures. The resolution of CT-scan data acquisition and the selection of image post-processing filters play a crucial role in the accuracy of numerical solutions. Notably, the reconstruction of pore space interfaces alters surface and volume representations, significantly affecting porosity and, consequently, permeability calculations. This study provides a detailed uncertainty analysis for an ideal porous medium, serving as a reference framework for the development of a multiscale and multiphysics methodology applicable to various particle assemblies, including geomaterials.

Type de document: Communication (Communication)
Informations complémentaires: Progress in Canadian Mechanical Engineering, Volume 8. Co-chairs: Lucas A. Hof, Giuseppe Di Labbio, Antoine Tahan, Marlène Sanjosé, Sébastien Lalonde and Nicole R. Demarquette.
Professeur:
Professeur
Pham Van Bang, Damien
Affiliation: Génie de la construction
Date de dépôt: 18 déc. 2025 14:44
Dernière modification: 18 déc. 2025 14:44
URI: https://espace2.etsmtl.ca/id/eprint/32202

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt