ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Removal of perfluoroalkyl and polyfluoroalkyl substances (PFAS) from water using a hybrid process of membrane separation and anodic oxidation process

Yousefi, Afrouz, Sadrzadeh, Mohtada et El-Din, Mohamed Gamal. 2025. « Removal of perfluoroalkyl and polyfluoroalkyl substances (PFAS) from water using a hybrid process of membrane separation and anodic oxidation process ». Communication lors de la conférence : CSME-CFDSC-CSR 2025 International Congress (Montreal, QC, Canada, May 25-28, 2025).

[thumbnail of 355 - Removal of perfluoroalkyl and poly.pdf]
Prévisualisation
PDF
355 - Removal of perfluoroalkyl and poly.pdf - Version publiée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (108kB) | Prévisualisation

Résumé

Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that pose serious toxicity risks to both humans and ecosystems. Removing PFAS at trace concentrations remains a significant challenge in advanced oxidation processes (AOPs). This study presents a hybrid anodic oxidation (AO)-membrane separation approach that enhances reaction kinetics by concentrating the feed solution. We developed a hydrophobic, electroconductive membrane that enables simultaneous water removal and perfluorooctanoate (PFOA) degradation while optimizing energy efficiency. The MXene-PVDF electroconductive membrane was fabricated via a one-step pressure-assisted deposition of Ti?C?Tx (MXene) nanosheets, securely bonded using carboxymethyl cellulose (CMC)/glutaraldehyde (GA) binder. By fine-tuning the MXene coating, we achieved a high electrical conductivity of 13,300 S/cm. Compared to AO alone, the integrated AO-MP system significantly enhanced PFAS breakdown and reduced total organic carbon (TOC) at ambient conditions. Increasing the current density from 50 to 500 A/m² led to a substantial rise in •OH radical generation, expediting PFOA degradation and mineralization. The oxidation process was initiated by direct electron transfer at the membrane interface, followed by hydroxyl radical-driven mineralization. Beyond improving degradation efficiency, this hybrid system also reduced energy consumption, making it a viable solution for large-scale applications. The MXene-PVDF membrane offers a sustainable strategy for capturing and degrading persistent micropollutants, ensuring safer and cleaner water for both environmental and potable use.

Type de document: Communication (Communication)
Informations complémentaires: Progress in Canadian Mechanical Engineering, Volume 8. Co-chairs: Lucas A. Hof, Giuseppe Di Labbio, Antoine Tahan, Marlène Sanjosé, Sébastien Lalonde and Nicole R. Demarquette.
Date de dépôt: 18 déc. 2025 14:56
Dernière modification: 18 déc. 2025 14:56
URI: https://espace2.etsmtl.ca/id/eprint/32274

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt