ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Rotation-driven multistable material system with reprogrammable logic for sequential-parallel computing

Chen, Shujia, Straney, Don et Pasini, Damiano. 2025. « Rotation-driven multistable material system with reprogrammable logic for sequential-parallel computing ». Communication lors de la conférence : CSME-CFDSC-CSR 2025 International Congress (Montreal, QC, Canada, May 25-28, 2025).

[thumbnail of 195 - Rotation-driven multistable materi.pdf]
Prévisualisation
PDF
195 - Rotation-driven multistable materi.pdf - Version publiée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (106kB) | Prévisualisation

Résumé

Recent advances in mechanical information processing are transforming physically embodied intelligence. However, a key challenge remains: achieving high-efficiency sequential information processing. In this work, we present a rotation-driven multistable material system in which mechanical-electrical state transitions are governed by a reprogrammable finite state machine (FSM) that seamlessly integrates elastic mechanical assemblies with non-volatile memory in a reconfigurable electrical network. The built-in combinational logic of the FSM dictates the system’s state transitions based on a prescribed sequence of rotational bistabilities and the in-situ switchable assembly of hierarchically coupled mechanical constituents. Elementary logic operations are demonstrated in a single-layer material system, represented by a single-bit FSM, while more complex computing, featuring parallel combinational logic, is achieved in a multi-layer material system. The resulting four-bit material system enables scalable and reprogrammable sequential-parallel digital logic computing. This material framework holds promise for applications in multi-task real-time control and dual-physical encryption, enabling sequential mechanical information sensing, non-volatile storage, and parallel electrical information processing

Type de document: Communication (Communication)
Informations complémentaires: Progress in Canadian Mechanical Engineering, Volume 8. Co-chairs: Lucas A. Hof, Giuseppe Di Labbio, Antoine Tahan, Marlène Sanjosé, Sébastien Lalonde and Nicole R. Demarquette.
Date de dépôt: 18 déc. 2025 14:57
Dernière modification: 18 déc. 2025 14:57
URI: https://espace2.etsmtl.ca/id/eprint/32284

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt