ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Attention-Based Multi-Agent RL for Multi-Machine Tending Using Mobile Robots

Abdalwhab, Abdalwhab Bakheet Mohamed, Beltrame, Giovanni, Ebrahimi Kahou, Samira et St-Onge, David. 2025. « Attention-Based Multi-Agent RL for Multi-Machine Tending Using Mobile Robots ». AI, vol. 6, nº 10.

[thumbnail of St-Onge-D-2025-32329.pdf]
Prévisualisation
PDF
St-Onge-D-2025-32329.pdf - Version publiée
Licence d'utilisation : Creative Commons CC BY.

Télécharger (7MB) | Prévisualisation

Résumé

Robotics can help address the growing worker shortage challenge of the manufacturing industry. As such, machine tending is a task collaborative robots can tackle that can also greatly boost productivity. Nevertheless, existing robotics systems deployed in that sector rely on a fixed single-arm setup, whereas mobile robots can provide more flexibility and scalability. We introduce a multi-agent multi-machine-tending learning framework using mobile robots based on multi-agent reinforcement learning (MARL) techniques, with the design of a suitable observation and reward. Moreover, we integrate an attention-based encoding mechanism into the Multi-Agent Proximal Policy Optimization (MAPPO) algorithm to boost its performance for machine-tending scenarios. Our model (AB-MAPPO) outperforms MAPPO in this new challenging scenario in terms of task success, safety, and resource utilization. Furthermore, we provided an extensive ablation study to support our design decisions.

Type de document: Article publié dans une revue, révisé par les pairs
Professeur:
Professeur
Ebrahimi-Kahou, Samira
St-Onge, David
Affiliation: Génie logiciel et des technologies de l'information, Génie mécanique
Date de dépôt: 07 oct. 2025 12:10
Dernière modification: 07 oct. 2025 19:19
URI: https://espace2.etsmtl.ca/id/eprint/32329

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt