Abdalwhab, Abdalwhab Bakheet Mohamed, Beltrame, Giovanni, Ebrahimi Kahou, Samira et St-Onge, David.
2025.
« Attention-Based Multi-Agent RL for Multi-Machine Tending Using Mobile Robots ».
AI, vol. 6, nº 10.
Prévisualisation |
PDF
St-Onge-D-2025-32329.pdf - Version publiée Licence d'utilisation : Creative Commons CC BY. Télécharger (7MB) | Prévisualisation |
Résumé
Robotics can help address the growing worker shortage challenge of the manufacturing industry. As such, machine tending is a task collaborative robots can tackle that can also greatly boost productivity. Nevertheless, existing robotics systems deployed in that sector rely on a fixed single-arm setup, whereas mobile robots can provide more flexibility and scalability. We introduce a multi-agent multi-machine-tending learning framework using mobile robots based on multi-agent reinforcement learning (MARL) techniques, with the design of a suitable observation and reward. Moreover, we integrate an attention-based encoding mechanism into the Multi-Agent Proximal Policy Optimization (MAPPO) algorithm to boost its performance for machine-tending scenarios. Our model (AB-MAPPO) outperforms MAPPO in this new challenging scenario in terms of task success, safety, and resource utilization. Furthermore, we provided an extensive ablation study to support our design decisions.
Type de document: | Article publié dans une revue, révisé par les pairs |
---|---|
Professeur: | Professeur Ebrahimi-Kahou, Samira St-Onge, David |
Affiliation: | Génie logiciel et des technologies de l'information, Génie mécanique |
Date de dépôt: | 07 oct. 2025 12:10 |
Dernière modification: | 07 oct. 2025 19:19 |
URI: | https://espace2.etsmtl.ca/id/eprint/32329 |
Actions (Authentification requise)
![]() |
Dernière vérification avant le dépôt |