ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

A systematic literature review of self-healing mechanisms in cyber-physical systems: Application to robotic manipulators

Alkassas, Omar, Ny, Jerome Le et Yacout, Soumaya. 2025. « A systematic literature review of self-healing mechanisms in cyber-physical systems: Application to robotic manipulators ». In Proceedings of the CSME-CFDSC-CSR 2025 International Congress (Montreal, QC, Canada, May 25-28, 2025) Coll. « Progress in Canadian Mechanical Engineering », vol. 8.

[thumbnail of 156 - A systematic literature review of .pdf]
Prévisualisation
PDF
156 - A systematic literature review of .pdf - Version publiée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (128kB) | Prévisualisation

Résumé

Self-healing mechanisms enhance the reliability of cyber-physical systems (CPS) by addressing system faults autonomously. This systematic literature review investigates self-healing strategies in CPS, with a focus on robotic manipulators, to identify limitations, challenges, and future directions. Robotic manipulators play a critical role in precision tasks such as assembly, welding, and material handling in manufacturing and other industries. Their integration of mechanical actuators, sensors, and embedded software makes them particularly vulnerable to faults and failures. While fault-tolerant control (FTC) methods maintain functionality during faults, their reactive nature and limited recovery capabilities underscore the need for self-healing systems. These mechanisms integrate predictive maintenance, real-time diagnostics, and adaptive recovery, leveraging technologies such as Artificial Intelligence (AI), Digital Twins (DT), and the Internet of Things (IoT). This review identifies advancements in predictive maintenance and recovery strategies while addressing gaps such as the reliance on simulations, limited real-world validation, and the absence of comprehensive frameworks that seamlessly combine pre-failure and post-failure mechanisms. The findings offer insights into the development of intelligent self-healing frameworks that advance the evolution of CPS in Industry 4.0.

Type de document: Compte rendu de conférence
Éditeurs:
Éditeurs
ORCID
Hof, Lucas A.
NON SPÉCIFIÉ
Di Labbio, Giuseppe
NON SPÉCIFIÉ
Tahan, Antoine
NON SPÉCIFIÉ
Sanjosé, Marlène
NON SPÉCIFIÉ
Lalonde, Sébastien
NON SPÉCIFIÉ
Demarquette, Nicole R.
NON SPÉCIFIÉ
Date de dépôt: 18 déc. 2025 15:08
Dernière modification: 18 déc. 2025 15:08
URI: https://espace2.etsmtl.ca/id/eprint/32354

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt