ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Effect of raster angles on the anisotropic behavior of 3D-printed TPU under uniaxial and planar loading conditions

Czekanski, Aleksander et Etiwa, Ragab. 2025. « Effect of raster angles on the anisotropic behavior of 3D-printed TPU under uniaxial and planar loading conditions ». In Proceedings of the CSME-CFDSC-CSR 2025 International Congress (Montreal, QC, Canada, May 25-28, 2025) Coll. « Progress in Canadian Mechanical Engineering », vol. 8.

[thumbnail of 166 - Effect of raster angles on the ani.pdf]
Prévisualisation
PDF
166 - Effect of raster angles on the ani.pdf - Version publiée
Licence d'utilisation : Tous les droits réservés aux détenteurs du droit d'auteur.

Télécharger (1MB) | Prévisualisation

Résumé

Thermoplastic polyurethane (TPU) is typically modeled as an isotropic hyperelastic material. However, when fabricated using fused deposition modeling (FDM), it exhibits anisotropic behavior due to directional filament alignment. This study investigates the effects of raster orientation and layer height on the mechanical performance of 3D-printed TPU using uniaxial and planar tensile tests. Four raster angles (0°, 90°, 0/90°, and -45/45°) were tested under uniaxial loading, while planar tests used 0° and 90° orientations. The 0° raster, aligned with the loading direction, showed the highest tensile strength (~9.5 MPa), modulus (~22.85 MPa), and elongation (>250%). The 90° raster displayed the lowest performance, with early failure (~90-100% strain), lower strength (~4-8 MPa), and reduced stiffness (~19.34 MPa), due to weak interlayer bonding. Bidirectional raster angle showed intermediate responses. Planar tensile results confirmed this anisotropy, with 0° specimens reaching ~20 MPa and 230% strain, while 90° specimens failed at ~5 MPa and ~50-60% strain. Microscopy images revealed that reducing layer height from 0.24 mm to 0.18 mm improved interlayer bonding but narrowed raster-to-raster bond widths. These results highlight the strong influence of printing parameters on TPU anisotropy and the need for constitutive models that account for directional effects in 3D-printed soft materials.

Type de document: Compte rendu de conférence
Éditeurs:
Éditeurs
ORCID
Hof, Lucas A.
NON SPÉCIFIÉ
Di Labbio, Giuseppe
NON SPÉCIFIÉ
Tahan, Antoine
NON SPÉCIFIÉ
Sanjosé, Marlène
NON SPÉCIFIÉ
Lalonde, Sébastien
NON SPÉCIFIÉ
Demarquette, Nicole R.
NON SPÉCIFIÉ
Date de dépôt: 18 déc. 2025 15:09
Dernière modification: 18 déc. 2025 15:09
URI: https://espace2.etsmtl.ca/id/eprint/32382

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt